

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

cis-1,2-Bis{[4-(4-pyridyl)pyrimidin-2-yl]sulfanylmethyl}benzene

Hua-Ze Dong,^a* Hai-Bin Zhu^b and Shao-Hua Gou^b

^aDeparment of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: dapdong@163.com

Received 25 October 2009; accepted 29 October 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.108; data-to-parameter ratio = 16.0.

The molecular skeleton of the title molecule, $C_{26}H_{20}N_6S_2$, adopts a cis conformation with the two arms positioned on one side of the benzene ring plane. Intramolecular π - π interactions between the pyrimidine rings [centroid-centroid distance = 3.654(2)Å] and between the pyridine rings [centroid–centroid distance = 3.775(2) Å] help to set the molecular conformation; the pyrimidine rings, as well as the pyridine rings, are nearly parallel, forming dihedral angles of 4.12 (14) and 2.46 (14)°, respectively.

Related literature

For related compounds, see: Dong et al. (2008, 2009); Huang et al. (2007).

Experimental

Crystal data

$C_{26}H_{20}N_6S_2$	V = 2273.3 (5) Å ³
$M_r = 480.62$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
$a = 8.6078 (11) \text{\AA}$	$\mu = 0.26 \text{ mm}^{-1}$
b = 27.102 (3) Å	$T = 291 { m K}$
c = 10.0282 (12) Å	$0.32 \times 0.18 \times 0.16 \text{ mm}$
$\beta = 103.661 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.917, \ T_{\max} = 0.966$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.108$ S = 0.904903 reflections

13064 measured reflections 4903 independent reflections 3067 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.052$

```
307 parameters
H-atom parameters constrained
\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}
\Delta \rho_{\rm min} = -0.22 e Å<sup>-3</sup>
```

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors are indebted to the National Natural Science Foundationof China (grant No. 20801011) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2646).

References

- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dong, H. Z., Zhao, J., Zhu, H. B. & Gou, S. H. (2009). Polyhedron, 28, 1040-1048
- Dong, H. Z., Zhu, H. B., Tong, T. F. & Gou, S. H. (2008). J. Mol. Struct. 891, 266-271
- Huang, C. H., Gou, S. H., Zhu, H. B. & Huang, W. (2007). Inorg. Chem. 46, 5537-5543.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o2977 [doi:10.1107/S1600536809045450]

cis-1,2-Bis{[4-(4-pyridyl)pyrimidin-2-yl]sulfanylmethyl}benzene

Hua-Ze Dong, Hai-Bin Zhu and Shao-Hua Gou

S1. Comment

Remarkable attention has been paid to the rational design and assembly of new coordination polymers with heterocyclic thiolates or thioethers in recent years. In our previous work, we reported aserials dithioether ligands (Dong *et al.*, 2008; 2009; Huang *et al.*, 2007). As our continuing study, herein we report the molecular structure of the title compound - the newly synthesized ligand derived from 4-(4-pyridinyl)pyrimidine-2-thiol.

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts a *cis* conformation with two arms positioned on one side of the benzene ring plane. It is noted that intramolecular π - π interactions between the pyrimidinyl rings [centroid-centroid distance of 3.654 (2) Å] and between the pyridinyl rings [centroid-centroid distance of 3.775 (2) Å] set the molecular conformation - the pyrimidinyl rings, as well as the pyridinyl ones, are nearly parallel forming dihedral angles of 4.12 (14)° and 2.46 (14)°, respectively.

S2. Experimental

All solvents and chemicals were of analytical grade and were used without further purification. The title compound was prepared by similar procedure reported in the literature (Dong *et al.*, 2008; 2009), To a solution of 4-(4-pyridinyl)pyrimidine-2-thiol (3.78 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) in dry ethanol (300 ml), 1,2-bis-(bromomethyl)benzene (2.64 g, 10 mmol) in CCl₄ (30 ml) was added. The mixture was stirred and refluxed for 8 h. After cooling, precipitates were filtered, washed in water and ethanol, and dried in vacuum. Anal. Calcd for C₂₆H₂₀N₆S₂: C, 64.98; H, 4.19; N, 17.49%. Found: C, 65.07; H, 4.52; N, 17.34%. Single crystals of ligang suitable for X-ray diffraction were grown from methanol solution by slow evaporation in air at room temperature.

S3. Refinement

All hydrogen atoms were geometrically positioned (C—H 0.93–0.97 Å) and refined as riding, with U_{iso} (H)=1.2 U_{eq} (C).

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

F(000) = 1000.0

 $\theta = 2.2 - 27.0^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$

Block, pale yellow

 $0.32 \times 0.18 \times 0.16$ mm

T = 291 K

 $D_{\rm x} = 1.404 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4903 reflections

cis-1,2-Bis{[4-(4-pyridyl)pyrimidin-2-yl]sulfanylmethyl}benzene

Crystal data

 $C_{26}H_{20}N_6S_2$ $M_r = 480.62$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.6078 (11) Å b = 27.102 (3) Å c = 10.0282 (12) Å $\beta = 103.661$ (2)° V = 2273.3 (5) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	13064 measured reflections
diffractometer	4903 independent reflections
Radiation source: fine-focus sealed tube	3067 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.052$
φ and ω scans	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 8$
(SADABS; Bruker, 2000)	$k = -34 \rightarrow 31$
$T_{\min} = 0.917, \ T_{\max} = 0.966$	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.108$	neighbouring sites
S = 0.90	H-atom parameters constrained
4903 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0421P)^2]$
307 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.32 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.7345 (3)	0.22381 (8)	0.8229 (2)	0.0384 (5)
C2	0.9748 (3)	0.25202 (9)	0.9324 (2)	0.0494 (6)
H2	1.0799	0.2469	0.9807	0.059*
C3	0.9230 (3)	0.29935 (8)	0.9059 (2)	0.0474 (6)
Н3	0.9909	0.3259	0.9351	0.057*
C4	0.7668 (3)	0.30680 (8)	0.8343 (2)	0.0411 (6)
C5	0.6967 (3)	0.35654 (8)	0.8048 (2)	0.0436 (6)
C6	0.7521 (3)	0.39620 (9)	0.8867 (3)	0.0623 (8)
H6	0.8355	0.3922	0.9640	0.075*
C7	0.6845 (4)	0.44177 (10)	0.8545 (3)	0.0774 (9)
H7	0.7240	0.4680	0.9125	0.093*
C8	0.5126 (3)	0.41215 (9)	0.6685 (3)	0.0690 (8)
H8	0.4291	0.4172	0.5919	0.083*
С9	0.5716 (3)	0.36519 (8)	0.6935 (3)	0.0529 (7)
Н9	0.5275	0.3394	0.6357	0.063*
C10	0.6875 (3)	0.12421 (7)	0.8693 (2)	0.0472 (6)
H10A	0.7817	0.1124	0.8418	0.057*
H10B	0.7188	0.1342	0.9648	0.057*
C11	0.5630 (3)	0.08400 (8)	0.8510(2)	0.0443 (6)
C12	0.5488 (3)	0.05264 (9)	0.7392 (3)	0.0592 (7)
H12	0.6183	0.0560	0.6815	0.071*
C13	0.4334 (4)	0.01686 (9)	0.7133 (3)	0.0687 (8)
H13	0.4248	-0.0038	0.6379	0.082*
C14	0.3317 (3)	0.01133 (9)	0.7966 (3)	0.0660 (8)
H14	0.2519	-0.0126	0.7777	0.079*

C15	0.3473 (3)	0.04123 (8)	0.9091 (3)	0.0566 (7)
H15	0.2794	0.0367	0.9677	0.068*
C16	0.4617 (3)	0.07813 (8)	0.9376 (2)	0.0446 (6)
C17	0.4698 (3)	0.11019 (7)	1.0609 (2)	0.0502 (6)
H17A	0.5805	0.1184	1.1017	0.060*
H17B	0.4283	0.0921	1.1285	0.060*
C18	0.4950 (3)	0.21357 (8)	1.0767 (2)	0.0380 (5)
C19	0.7376 (3)	0.24131 (9)	1.1805 (2)	0.0484 (6)
H19	0.8442	0.2358	1.2238	0.058*
C20	0.6847 (3)	0.28872 (8)	1.1637 (2)	0.0446 (6)
H20	0.7523	0.3151	1.1955	0.053*
C21	0.5267 (3)	0.29608 (8)	1.0977 (2)	0.0393 (5)
C22	0.4562 (3)	0.34572 (8)	1.0709 (2)	0.0399 (5)
C23	0.5154 (3)	0.38590 (9)	1.1509 (3)	0.0589 (7)
H23	0.6024	0.3823	1.2253	0.071*
C24	0.4452 (4)	0.43133 (9)	1.1201 (3)	0.0701 (9)
H24	0.4868	0.4579	1.1761	0.084*
C25	0.3284 (3)	0.35403 (8)	0.9626 (2)	0.0497 (6)
H25	0.2835	0.3282	0.9052	0.060*
C26	0.2679 (3)	0.40072 (9)	0.9402 (3)	0.0597 (7)
H26	0.1816	0.4054	0.8656	0.072*
N1	0.8822 (2)	0.21295 (7)	0.89261 (18)	0.0458 (5)
N2	0.6713 (2)	0.26820 (6)	0.79073 (17)	0.0405 (5)
N3	0.5667 (3)	0.45081 (8)	0.7465 (3)	0.0771 (8)
N4	0.6443 (2)	0.20240 (7)	1.13813 (19)	0.0463 (5)
N5	0.4294 (2)	0.25802 (6)	1.05275 (17)	0.0394 (5)
N6	0.3221 (3)	0.43947 (7)	1.0157 (2)	0.0640 (6)
S1	0.60063 (8)	0.17575 (2)	0.76342 (6)	0.04810 (19)
S2	0.35623 (8)	0.16649 (2)	1.01669 (6)	0.04634 (19)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0353 (14)	0.0411 (13)	0.0382 (13)	-0.0043 (11)	0.0074 (11)	0.0000 (10)
C2	0.0363 (16)	0.0586 (16)	0.0487 (15)	-0.0038 (12)	0.0005 (12)	0.0005 (12)
C3	0.0409 (16)	0.0496 (15)	0.0480 (15)	-0.0112 (12)	0.0031 (12)	-0.0033 (11)
C4	0.0424 (15)	0.0443 (13)	0.0377 (13)	-0.0058 (12)	0.0116 (11)	-0.0023 (10)
C5	0.0423 (16)	0.0436 (14)	0.0462 (14)	-0.0055 (11)	0.0131 (12)	-0.0066 (11)
C6	0.068 (2)	0.0518 (16)	0.0583 (17)	-0.0030 (15)	-0.0019 (14)	-0.0126 (13)
C7	0.090 (3)	0.0455 (17)	0.086 (2)	-0.0035 (16)	-0.001 (2)	-0.0243 (15)
C8	0.063 (2)	0.0504 (16)	0.081 (2)	0.0088 (14)	-0.0070 (16)	-0.0122 (15)
C9	0.0461 (17)	0.0422 (14)	0.0656 (17)	-0.0020 (12)	0.0036 (14)	-0.0122 (12)
C10	0.0394 (15)	0.0401 (13)	0.0559 (15)	0.0036 (11)	-0.0010 (12)	0.0066 (11)
C11	0.0447 (16)	0.0305 (12)	0.0509 (15)	0.0019 (11)	-0.0025 (12)	0.0012 (11)
C12	0.064 (2)	0.0480 (15)	0.0640 (18)	-0.0002 (14)	0.0131 (15)	-0.0030 (13)
C13	0.079 (2)	0.0455 (16)	0.072 (2)	-0.0027 (15)	-0.0014 (18)	-0.0151 (14)
C14	0.058 (2)	0.0367 (15)	0.094 (2)	-0.0075 (13)	-0.0005 (17)	-0.0006 (15)
C15	0.0512 (18)	0.0380 (14)	0.079 (2)	0.0012 (12)	0.0129 (15)	0.0064 (13)

C16	0.0457 (16)	0.0304 (12)	0.0526 (15)	0.0027 (11)	0.0016 (12)	0.0056 (11)
C17	0.0563 (17)	0.0387 (13)	0.0527 (16)	0.0057 (12)	0.0071 (13)	0.0101 (11)
C18	0.0354 (15)	0.0429 (13)	0.0355 (13)	0.0000 (11)	0.0084 (11)	-0.0030 (10)
C19	0.0335 (15)	0.0601 (16)	0.0471 (15)	0.0018 (13)	0.0005 (12)	0.0007 (12)
C20	0.0357 (15)	0.0464 (14)	0.0473 (14)	-0.0037 (11)	0.0014 (12)	-0.0047 (11)
C21	0.0379 (14)	0.0453 (13)	0.0340 (13)	-0.0012 (11)	0.0070 (11)	-0.0043 (10)
C22	0.0364 (14)	0.0410 (13)	0.0417 (13)	-0.0033 (11)	0.0080 (11)	-0.0054 (10)
C23	0.0475 (17)	0.0524 (16)	0.0654 (18)	0.0002 (13)	-0.0096 (14)	-0.0141 (13)
C24	0.065 (2)	0.0455 (16)	0.088 (2)	-0.0040 (14)	-0.0062 (17)	-0.0218 (14)
C25	0.0514 (17)	0.0407 (14)	0.0511 (15)	0.0003 (12)	0.0003 (13)	-0.0089 (11)
C26	0.0584 (19)	0.0521 (16)	0.0590 (17)	0.0073 (14)	-0.0057 (14)	-0.0017 (13)
N1	0.0354 (13)	0.0505 (12)	0.0475 (12)	-0.0011 (10)	0.0016 (10)	0.0037 (9)
N2	0.0357 (12)	0.0397 (11)	0.0440 (11)	-0.0041 (9)	0.0054 (9)	-0.0016 (9)
N3	0.079 (2)	0.0508 (14)	0.0889 (19)	0.0089 (13)	-0.0057 (15)	-0.0148 (13)
N4	0.0392 (13)	0.0472 (11)	0.0494 (12)	0.0050 (10)	0.0041 (10)	0.0038 (9)
N5	0.0350 (12)	0.0394 (11)	0.0420 (11)	0.0016 (9)	0.0053 (9)	-0.0027 (8)
N6	0.0645 (17)	0.0434 (13)	0.0754 (16)	0.0052 (11)	-0.0007 (13)	-0.0055 (11)
S1	0.0409 (4)	0.0417 (3)	0.0538 (4)	-0.0057 (3)	-0.0044 (3)	0.0051 (3)
S2	0.0425 (4)	0.0402 (3)	0.0539 (4)	-0.0003 (3)	0.0067 (3)	-0.0024 (3)

Geometric parameters (Å, °)

C1—N2	1.328 (2)	С13—Н13	0.9300
C1—N1	1.331 (3)	C14—C15	1.369 (3)
C1—S1	1.748 (2)	C14—H14	0.9300
C2—N1	1.329 (3)	C15—C16	1.385 (3)
С2—С3	1.364 (3)	C15—H15	0.9300
С2—Н2	0.9300	C16—C17	1.500 (3)
C3—C4	1.381 (3)	C17—S2	1.810 (2)
С3—Н3	0.9300	C17—H17A	0.9700
C4—N2	1.338 (2)	C17—H17B	0.9700
C4—C5	1.478 (3)	C18—N4	1.323 (3)
С5—С6	1.369 (3)	C18—N5	1.328 (2)
С5—С9	1.375 (3)	C18—S2	1.754 (2)
C6—C7	1.371 (3)	C19—N4	1.333 (3)
С6—Н6	0.9300	C19—C20	1.360 (3)
C7—N3	1.320 (3)	C19—H19	0.9300
С7—Н7	0.9300	C20—C21	1.379 (3)
C8—N3	1.324 (3)	C20—H20	0.9300
С8—С9	1.372 (3)	C21—N5	1.339 (2)
С8—Н8	0.9300	C21—C22	1.474 (3)
С9—Н9	0.9300	C22—C25	1.369 (3)
C10-C11	1.509 (3)	C22—C23	1.377 (3)
C10—S1	1.807 (2)	C23—C24	1.374 (3)
C10—H10A	0.9700	С23—Н23	0.9300
C10—H10B	0.9700	C24—N6	1.321 (3)
C11—C16	1.377 (3)	C24—H24	0.9300
C11—C12	1.389 (3)	C25—C26	1.367 (3)

C12—C13	1.368 (3)	C25—H25	0.9300
C12—H12	0.9300	C26—N6	1.314 (3)
C13—C14	1.354 (4)	C26—H26	0.9300
N2—C1—N1	127.8 (2)	C14—C15—H15	119.2
N2—C1—S1	113.12 (17)	C16—C15—H15	119.2
N1—C1—S1	119.04 (17)	C11—C16—C15	118.6 (2)
N1—C2—C3	123.0 (2)	C11—C16—C17	122.7 (2)
N1—C2—H2	118.5	C15—C16—C17	118.7 (2)
С3—С2—Н2	118.5	C16—C17—S2	111.68 (15)
C2—C3—C4	118.2 (2)	С16—С17—Н17А	109.3
С2—С3—Н3	120.9	S2—C17—H17A	109.3
С4—С3—Н3	120.9	С16—С17—Н17В	109.3
N2—C4—C3	120.2 (2)	S2—C17—H17B	109.3
N2—C4—C5	117.2 (2)	H17A—C17—H17B	107.9
C3—C4—C5	122.6 (2)	N4—C18—N5	128.1 (2)
C6—C5—C9	116.6 (2)	N4—C18—S2	120.10 (17)
C6—C5—C4	121.9 (2)	N5-C18-S2	111.83 (17)
C9—C5—C4	121.5 (2)	N4—C19—C20	123.3 (2)
C5—C6—C7	119.8 (2)	N4—C19—H19	118.4
С5—С6—Н6	120.1	С20—С19—Н19	118.4
С7—С6—Н6	120.1	C19—C20—C21	117.4 (2)
N3—C7—C6	124.2 (2)	С19—С20—Н20	121.3
N3—C7—H7	117.9	C21—C20—H20	121.3
C6-C7-H7	117.9	N5-C21-C20	121.2 (2)
N3—C8—C9	124.2 (2)	N5-C21-C22	116.3 (2)
N3—C8—H8	117.9	C20—C21—C22	122.4 (2)
С9—С8—Н8	117.9	C_{25} C_{22} C_{23}	116.7(2)
C8-C9-C5	119.5 (2)	C_{25} C_{22} C_{21}	120.9(2)
С8—С9—Н9	120.3	C_{23} C_{22} C_{21}	122.4(2)
С5—С9—Н9	120.3	C24—C23—C22	119.7 (2)
$C_{11} - C_{10} - S_{1}$	107.66 (15)	C24—C23—H23	120.1
C11—C10—H10A	110.2	C22—C23—H23	120.1
S1—C10—H10A	110.2	N6—C24—C23	123.7 (2)
C11—C10—H10B	110.2	N6-C24-H24	118.1
S1—C10—H10B	110.2	C23—C24—H24	118.1
H10A—C10—H10B	108.5	C26—C25—C22	119.1 (2)
C16—C11—C12	119.3 (2)	C26—C25—H25	120.4
C16—C11—C10	122.9 (2)	C22—C25—H25	120.4
C12—C11—C10	117.7 (2)	N6—C26—C25	125.1 (2)
C13—C12—C11	120.6 (3)	N6—C26—H26	117.4
C13—C12—H12	119.7	C25—C26—H26	117.4
C11—C12—H12	119.7	C2-N1-C1	114.35 (19)
C14-C13-C12	120.5 (3)	C1—N2—C4	116.4 (2)
C14—C13—H13	119.8	C7—N3—C8	115.6 (2)
C12—C13—H13	119.8	C18—N4—C19	114.42 (19)
C13—C14—C15	119.4 (3)	C18—N5—C21	115.62 (19)
C13—C14—H14	120.3	$C_{26} - N_{6} - C_{24}$	115.6 (2)
		020 110 021	

supporting information

C15—C14—H14	120.3	C1—S1—C10	103.16 (11)
C14—C15—C16	121.6 (3)	C18—S2—C17	104.16 (11)