organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Benzhydryl phenyl sulfone

Mahiuddin Baidya, Herbert Mayr and Peter Mayer*

Ludwig-Maximilians-Universität, Department, Butenandtstrasse 5-13, 81377 München, Germany Correspondence e-mail: pemay@cup.uni-muenchen.de

Received 3 November 2009: accepted 23 November 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.075; data-to-parameter ratio = 17.6.

In the title compound, $C_{19}H_{16}O_2S$, the sulfur-bound phenyl group is approximately parallel to one of the two phenyl rings of the benzhydryl group, making a dihedral angle of $12.53 (10)^{\circ}$, and forms a dihedral angle of $41.25 (9)^{\circ}$ with the other phenyl ring. In the crystal, weak $C-H \cdots O$ interactions form a two-dimensional network propagating along the bc plane.

Related literature

For background to the sulfone anion, see: da Silva Corrêa et al. (1968); Mayr et al. (2001, 2008). For a related structure, see: Li et al. (2005). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental

Crystal data $C_{19}H_{16}O_2S$ $M_r = 308.40$ Orthorhombic, Pca21 a = 16.3250 (4) Å b = 5.7979 (1) Å c = 16.4983 (4) Å

V = 1561.58 (6) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.21 \text{ mm}^{-1}$
T = 200 K
$0.20 \times 0.10 \times 0.09 \ \mathrm{mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: none 11675 measured reflections	3499 independent reflections 3136 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$		
Refinement			
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained		

R[1 > 20(1)] = 0.051	11 atom parameters constrained
$wR(F^2) = 0.075$	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
3499 reflections	Absolute structure: Flack (1983),
199 parameters	1646 Friedel pairs
1 restraint	Flack parameter: -0.03 (6)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots O2^i$	1.00	2.46	3.449 (2)	171
$C4-H4\cdots O1^{ii}$	0.95	2.66	3.390 (2)	134
$C7 - H7 \cdots O2^i$	0.95	2.68	3.543 (2)	152

Symmetry codes: (i) x, y + 1, z; (ii) $-x, -y, z - \frac{1}{2}$.

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2011).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
- Li, Y.-S. & Su, W.-K. (2005). Acta Cryst. E61, o2450-o2451.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Mayr, H., Bug, T., Gotta, M. F., Hering, N., Irrgang, B., Janker, B., Kempf, B., Loos, R., Ofial, A. R., Remennikov, G. & Schimmel, H. (2001). J. Am. Chem.
- Soc. 123, 9500-9512.
- Mayr, H. & Ofial, A. R. (2008). J. Phys. Org. Chem. 21, 584-595.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Silva Corrêa, C. M. M. da, Lindsay, A. S. & Waters, W. A. (1968). J. Chem. Soc С., рр. 1872–1874.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o3224 [doi:10.1107/S1600536809050363]

Benzhydryl phenyl sulfone

Mahiuddin Baidya, Herbert Mayr and Peter Mayer

S1. Comment

During our studies on the ambident reactivity of the phenylsulfinate anion we used diarylcarbenium ions (Ar_2CH^+) as reference electrophiles [Mayr *et al.* (2001, 2008)] and, hence, obtained the title compound from a reaction of sodium benzenesulfinate with benzhydryl chloride (Ph₂CHCl) in dimethyl sulfoxide.

The asymmetric unit of the title compound contains one complete molecule, which is shown in Figure 1. The sulfurbound phenyl group is approximately parallel to one of the two phenyl rings of the benzhydryl group with an dihedral angle of $12.53 (10)^\circ$. The other one forms a dihedral angle of $41.25 (9)^\circ$ with the phenyl group bound to the sulfur atom.

Three weak C–H···O interactions are found (Table 1) which lead to the formation of a two-dimensional network that propagates along the *bc* plane (Fig. 2). Contacts of this type have been described for a structure of a related sulfone [Li *et al.* (2005)]. In terms of graph-set analysis [Bernstein *et al.* (1995), Etter *et al.* (1990)], the descriptors on the unitary level are $C_1^{1}(4)$ for the H1···O2 interaction, $C_1^{1}(6)$ for the H7···O2 interaction, and $C_1^{1}(7)$ for the H4···O1 interaction.

S2. Experimental

Benzhydryl Phenyl Sulfone was obtained by heating a mixture of sodium benzenesulfinate (0.21 g, 1.3 mmol) and benzhydryl chloride (0.26 g, 1.3 mmol) in DMSO at 70 °C. After completion of the reaction (4 h), the reaction mixture was cooled to room temperature, diluted with water, and extracted with ethyl acetate. The organic phase was washed several times with water and dried (MgSO₄). A viscous oil was obtained after evaporation of the solvent under reduced pressure that solidified on standing. After column chromatography (silica gel, isohexane/EtOAc = 9/1), benzhydryl phenyl sulfone was isolated as colorless solid (0.33 g, 82%). A small amount of the title compound was dissolved in ethyl acetate. The solvent was allowed to evaporate slowly at room temperature. After 2 days crystals had formed that were suitable for X-ray analysis. mp 189 °C (186–187 °C [da Silva Corrêa *et al.* (1968)]).

S3. Refinement

All H atoms were found in difference maps. C-bonded H atoms were positioned geometrically (C—H = 1.00 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms $[U_{iso}(H) = 1.2U_{eq}(C)]$.

Figure 1

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Figure 2

Weak intermolecular hydrogen bonds of the type C–H···O leading to a two-dimensional network that propagates along the *bc* plane (viewing direction approximately along [110]). Color scheme for dashed lines: blue: H1···O2 contacts, red: H7···O2 contacts, green: H4···O1 contacts.

Benzhydryl phenyl sulfone

Crystal data

 $C_{19}H_{16}O_2S$ $M_r = 308.40$ Orthorhombic, $Pca2_1$ Hall symbol: P 2c -2ac a = 16.3250 (4) Å b = 5.7979 (1) Å c = 16.4983 (4) Å V = 1561.58 (6) Å³ Z = 4

Data collection

Nonius KappaCCD	3499 independent reflections
diffractometer	3136 reflections with $I > 2\sigma(I)$
Radiation source: rotating anode	$R_{\rm int} = 0.027$
MONTEL, graded multilayered X-ray optics	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.5^{\circ}$
monochromator	$h = -21 \rightarrow 21$
Detector resolution: 9 pixels mm ⁻¹	$k = -7 \longrightarrow 6$
CCD; rotation images; thick slices, phi/ ω -scan	$l = -21 \rightarrow 20$
11675 measured reflections	

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.031$ H-atom parameters constrained $wR(F^2) = 0.075$ $w = 1/[\sigma^2(F_0^2) + (0.0396P)^2 + 0.2163P]$ S = 1.04where $P = (F_0^2 + 2F_c^2)/3$ 3499 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$ 199 parameters 1 restraint $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1646 Friedel Primary atom site location: structure-invariant direct methods pairs Secondary atom site location: difference Fourier Absolute structure parameter: -0.03 (6) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*² are statistically about twice as large as those based on *F*, and *R*-factors based on all data will be even larger.

F(000) = 648

 $\theta = 3.1 - 27.5^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$

Rod, colourless $0.20 \times 0.10 \times 0.09$ mm

T = 200 K

 $D_{\rm x} = 1.312$ (1) Mg m⁻³

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 6504 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.06340 (2)	0.12898 (6)	0.26302 (3)	0.02887 (10)	
01	0.08669 (8)	0.1945 (2)	0.34378 (7)	0.0408 (3)	
02	0.03981 (7)	-0.10715 (19)	0.24877 (8)	0.0384 (3)	

C1	0.01799 (10)	0.2220(2)	0.22002 (10)	0.027((2))
	-0.01/88 (10)	0.3229 (3)	0.23092 (10)	0.0276 (3)
HI C2	0.0034	0.4820	0.2409	0.033*
C2	-0.03155(9)	0.30/3(3)	0.14009 (10)	0.0272(3)
03	-0.06491 (11)	0.1160 (3)	0.10143 (11)	0.0347 (4)
H3	-0.0816	-0.0139	0.1324	0.042*
C4	-0.07391 (11)	0.1141 (3)	0.01781 (12)	0.0405 (4)
H4	-0.0964	-0.0180	-0.0080	0.049*
C5	-0.05082 (12)	0.2999 (4)	-0.02807 (12)	0.0428 (4)
H5	-0.0576	0.2970	-0.0853	0.051*
C6	-0.01740 (12)	0.4927 (4)	0.00955 (13)	0.0451 (5)
H6	-0.0008	0.6218	-0.0218	0.054*
C7	-0.00847 (11)	0.4955 (3)	0.09276 (11)	0.0363 (4)
H7	0.0138	0.6283	0.1182	0.044*
C8	-0.09145 (10)	0.2969 (3)	0.28610 (9)	0.0304 (4)
C9	-0.14154 (12)	0.1021 (3)	0.28814 (12)	0.0431 (4)
Н9	-0.1290	-0.0274	0.2551	0.052*
C10	-0.20970 (13)	0.0971 (4)	0.33832 (13)	0.0500 (5)
H10	-0.2444	-0.0343	0.3383	0.060*
C11	-0.22748 (13)	0.2805 (4)	0.38811 (13)	0.0531 (5)
H11	-0.2740	0.2751	0.4227	0.064*
C12	-0.17763 (14)	0.4719 (4)	0.38771 (14)	0.0547 (5)
H12	-0.1895	0.5985	0.4223	0.066*
C13	-0.10994 (12)	0.4802 (3)	0.33668 (11)	0.0406 (4)
H13	-0.0760	0.6133	0.3365	0.049*
C14	0.14411 (10)	0.2005 (3)	0.19613 (10)	0.0292 (3)
C15	0.18653 (11)	0.4044 (3)	0.20890 (12)	0.0407 (4)
H15	0.1739	0.5002	0.2539	0.049*
C16	0.24784 (12)	0.4662 (3)	0.15468 (14)	0.0479 (5)
H16	0.2775	0.6055	0.1623	0.057*
C17	0.26549 (12)	0.3259 (4)	0.09010 (13)	0.0503 (5)
H17	0.3075	0.3691	0.0532	0.060*
C18	0.22315 (13)	0.1231 (4)	0.07798 (14)	0.0517 (5)
H18	0.2364	0.0267	0.0333	0.062*
C19	0.16122 (12)	0.0598 (3)	0.13093 (12)	0.0403 (4)
H19	0.1311	-0.0782	0.1224	0.048*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.03180 (18)	0.02898 (18)	0.02584 (18)	0.00027 (14)	-0.00044 (18)	0.00176 (17)
01	0.0447 (7)	0.0530 (8)	0.0247 (6)	0.0025 (6)	-0.0042 (5)	0.0005 (5)
O2	0.0408 (6)	0.0273 (6)	0.0471 (9)	-0.0006 (4)	0.0029 (6)	0.0047 (5)
C1	0.0315 (8)	0.0251 (8)	0.0263 (8)	-0.0019 (6)	0.0000 (7)	-0.0014 (6)
C2	0.0257 (7)	0.0301 (8)	0.0258 (8)	0.0028 (6)	0.0008 (6)	0.0011 (6)
C3	0.0384 (9)	0.0357 (9)	0.0301 (9)	-0.0062 (7)	-0.0017 (7)	-0.0001 (7)
C4	0.0394 (9)	0.0507 (11)	0.0312 (10)	-0.0053 (8)	-0.0032 (8)	-0.0060(8)
C5	0.0423 (10)	0.0597 (12)	0.0262 (9)	0.0046 (9)	-0.0005 (8)	0.0006 (8)
C6	0.0561 (13)	0.0471 (11)	0.0321 (9)	0.0014 (9)	0.0063 (9)	0.0098 (7)

C7	0.0440 (10)	0.0316 (9)	0.0334 (9)	-0.0002 (7)	0.0045 (7)	0.0013 (7)
C8	0.0327 (8)	0.0324 (8)	0.0261 (9)	0.0015 (6)	-0.0017 (6)	0.0028 (6)
C9	0.0433 (10)	0.0450 (11)	0.0410 (11)	-0.0093 (8)	0.0040 (8)	-0.0017 (8)
C10	0.0403 (10)	0.0638 (13)	0.0460 (12)	-0.0138 (9)	0.0040 (9)	0.0146 (10)
C11	0.0409 (10)	0.0738 (14)	0.0445 (12)	0.0098 (10)	0.0133 (9)	0.0159 (11)
C12	0.0575 (13)	0.0597 (13)	0.0470 (12)	0.0113 (10)	0.0174 (10)	-0.0022 (10)
C13	0.0465 (10)	0.0412 (10)	0.0340 (10)	0.0044 (8)	0.0048 (8)	-0.0049 (8)
C14	0.0270 (8)	0.0333 (8)	0.0273 (8)	0.0008 (6)	-0.0026 (7)	0.0016 (7)
C15	0.0384 (10)	0.0429 (10)	0.0409 (11)	-0.0064 (8)	-0.0044 (8)	-0.0039 (8)
C16	0.0340 (9)	0.0507 (11)	0.0589 (13)	-0.0111 (9)	-0.0065 (9)	0.0088 (10)
C17	0.0320 (9)	0.0683 (13)	0.0505 (12)	0.0027 (9)	0.0089 (9)	0.0144 (10)
C18	0.0466 (11)	0.0625 (13)	0.0459 (12)	0.0048 (9)	0.0128 (10)	-0.0074 (10)
C19	0.0402 (9)	0.0394 (9)	0.0414 (11)	0.0016 (8)	0.0045 (8)	-0.0056 (8)

Geometric parameters (Å, °)

<u>S1—01</u>	1.4366 (13)	C9—C10	1.387 (3)
S1—O2	1.4415 (12)	С9—Н9	0.9500
S1—C14	1.7681 (17)	C10-C11	1.374 (3)
S1—C1	1.8180 (16)	C10—H10	0.9500
C1—C8	1.514 (2)	C11—C12	1.376 (3)
C1—C2	1.518 (2)	C11—H11	0.9500
C1—H1	1.0000	C12—C13	1.390 (3)
C2—C3	1.390 (2)	C12—H12	0.9500
C2—C7	1.394 (2)	C13—H13	0.9500
C3—C4	1.387 (3)	C14—C19	1.379 (2)
С3—Н3	0.9500	C14—C15	1.386 (2)
C4—C5	1.369 (3)	C15—C16	1.389 (3)
C4—H4	0.9500	C15—H15	0.9500
C5—C6	1.390 (3)	C16—C17	1.371 (3)
С5—Н5	0.9500	C16—H16	0.9500
C6—C7	1.381 (3)	C17—C18	1.378 (3)
С6—Н6	0.9500	C17—H17	0.9500
С7—Н7	0.9500	C18—C19	1.386 (3)
C8—C13	1.385 (2)	C18—H18	0.9500
С8—С9	1.395 (3)	С19—Н19	0.9500
01—\$1—02	118.23 (7)	C10—C9—C8	120.08 (19)
01—S1—C14	108.64 (8)	С10—С9—Н9	120.0
O2—S1—C14	108.67 (8)	С8—С9—Н9	120.0
O1—S1—C1	107.45 (8)	C11—C10—C9	120.67 (19)
O2—S1—C1	110.16(7)	C11—C10—H10	119.7
C14—S1—C1	102.53 (8)	C9—C10—H10	119.7
C8—C1—C2	118.10 (14)	C10-C11-C12	119.74 (19)
C8—C1—S1	110.02 (11)	C10-C11-H11	120.1
C2-C1-S1	110.99 (11)	C12—C11—H11	120.1
C8—C1—H1	105.6	C11—C12—C13	120.05 (19)
C2	105.6	C11—C12—H12	120.0

S1—C1—H1	105.6	C13—C12—H12	120.0
C3—C2—C7	118.25 (15)	C8—C13—C12	120.79 (18)
C3—C2—C1	123.92 (15)	C8—C13—H13	119.6
C7—C2—C1	117.83 (14)	C12—C13—H13	119.6
C4—C3—C2	120.27 (16)	C19—C14—C15	121.46 (17)
С4—С3—Н3	119.9	C19—C14—S1	119.94 (13)
С2—С3—Н3	119.9	C15—C14—S1	118.53 (13)
C5—C4—C3	120.94 (18)	C14—C15—C16	118.82 (18)
C5—C4—H4	119.5	C14—C15—H15	120.6
C3—C4—H4	119.5	C16—C15—H15	120.6
C4—C5—C6	119.59 (18)	C17—C16—C15	119.91 (18)
С4—С5—Н5	120.2	C17—C16—H16	120.0
С6—С5—Н5	120.2	C15—C16—H16	120.0
C7—C6—C5	119.67 (18)	C16—C17—C18	120.89 (19)
С7—С6—Н6	120.2	C16—C17—H17	119.6
С5—С6—Н6	120.2	C18—C17—H17	119.6
C6—C7—C2	121.27 (17)	C17—C18—C19	120.03 (19)
С6—С7—Н7	119.4	C17—C18—H18	120.0
С2—С7—Н7	119.4	C19—C18—H18	120.0
C13—C8—C9	118.64 (17)	C14—C19—C18	118.88 (18)
C13—C8—C1	117.33 (15)	C14—C19—H19	120.6
C9—C8—C1	124.03 (15)	C18—C19—H19	120.6
	. ,		
O1—S1—C1—C8	-61.76 (13)	C13—C8—C9—C10	1.9 (3)
O2—S1—C1—C8	68.31 (13)	C1—C8—C9—C10	-177.35 (17)
C14—S1—C1—C8	-176.16 (11)	C8—C9—C10—C11	-1.8 (3)
O1—S1—C1—C2	165.65 (11)	C9—C10—C11—C12	0.6 (3)
O2—S1—C1—C2	-64.28 (13)	C10-C11-C12-C13	0.5 (3)
C14—S1—C1—C2	51.25 (12)	C9—C8—C13—C12	-0.9 (3)
C8—C1—C2—C3	-59.0 (2)	C1—C8—C13—C12	178.46 (18)
S1—C1—C2—C3	69.33 (18)	C11—C12—C13—C8	-0.3 (3)
C8—C1—C2—C7	121.61 (17)	O1—S1—C14—C19	144.32 (14)
\$1—C1—C2—C7	-110.03 (15)	O2—S1—C14—C19	14.45 (16)
C7—C2—C3—C4	0.6 (3)	C1—S1—C14—C19	-102.16 (15)
C1—C2—C3—C4	-178.76 (17)	O1—S1—C14—C15	-38.52 (16)
C2—C3—C4—C5	-0.5 (3)	O2—S1—C14—C15	-168.39 (13)
C3—C4—C5—C6	0.4 (3)	C1—S1—C14—C15	75.01 (15)
C4—C5—C6—C7	-0.5 (3)	C19—C14—C15—C16	-0.3 (3)
C5—C6—C7—C2	0.7 (3)	S1-C14-C15-C16	-177.45 (15)
C3—C2—C7—C6	-0.7 (3)	C14—C15—C16—C17	-0.2 (3)
C1—C2—C7—C6	178.68 (17)	C15-C16-C17-C18	0.0 (3)
C2-C1-C8-C13	-120.05(16)	C16—C17—C18—C19	0.7 (3)
	120.05 (10)		
S1—C1—C8—C13	111.14 (15)	C15—C14—C19—C18	1.0 (3)
S1—C1—C8—C13 C2—C1—C8—C9	111.14 (15) 59.2 (2)	C15—C14—C19—C18 S1—C14—C19—C18	1.0 (3) 178.09 (15)
S1—C1—C8—C13 C2—C1—C8—C9 S1—C1—C8—C9	111.14 (15) 59.2 (2) -69.59 (19)	C15—C14—C19—C18 S1—C14—C19—C18 C17—C18—C19—C14	1.0 (3) 178.09 (15) -1.2 (3)

D—H···A	D—H	Н…А	D···A	D—H···A	
C1—H1···O2 ⁱ	1.00	2.46	3.449 (2)	171	
C4—H4···O1 ⁱⁱ	0.95	2.66	3.390 (2)	134	
C7—H7···O2 ⁱ	0.95	2.68	3.543 (2)	152	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*, –*y*, *z*–1/2.