

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Methyl-2,4-bis(2-methoxyphenyl)-3azabicyclo[3.3.1]nonan-9-one

P. Parthiban,^a V. Ramkumar^b and Yeon Tae Jeong^a*

^aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and ^bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India

Correspondence e-mail: ytjeong@pknu.ac.kr

Received 16 September 2009; accepted 12 November 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.127; data-to-parameter ratio = 18.4.

The crystal structure of the title compound, $C_{23}H_{27}NO_3$, shows that the compound exists in a chair–chair conformation with an equatorial disposition of 2-methoxyphenyl groups at an angle of 39.94 (3)° with respect to each other. An intermolecular N–H··· π interaction is observed in the crystal packing.

Related literature

For the biological activity of 3-azabicyclononanes, see: Barker *et al.* (2005); Hardick *et al.* (1996); Jeyaraman & Avila (1981). For related structures with similar conformations, see: Parthiban *et al.* (2008); Parthiban, Ramkumar & Jeong (2009); Parthiban, Ramkumar, Kim *et al.* (2009). For a related structure with a chair–boat conformation, see: Smith-Verdier *et al.* (1983). For a related structure with a boat–boat conformation, see: Padegimas & Kovacic (1972). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental

Crystal data

 $\begin{array}{l} C_{23}H_{27}NO_3\\ M_r = 365.46\\ \text{Monoclinic, } P2_1/n\\ a = 7.9569 \ (3) \ \text{\AA}\\ b = 20.8291 \ (9) \ \text{\AA}\\ c = 11.6708 \ (6) \ \text{\AA}\\ \beta = 96.297 \ (2)^{\circ} \end{array}$

 $V = 1922.59 (15) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 298 K $0.41 \times 0.24 \times 0.20 \text{ mm}$ organic compounds

Data collection

Bruker APEXII CCD area-detector	14049 measured reflections
diffractometer	4608 independent reflections
Absorption correction: multi-scan	3166 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1999)	$R_{\rm int} = 0.026$
$T_{\min} = 0.288, \ T_{\max} = 0.980$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.127$	independent and constrained
S = 1.02	refinement
4608 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
251 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots Cg1^{i}$	0.862 (15)	2.852 (3)	3.6276 (14)	150.6 (12)

Symmetry code: (i) -x + 1, -y, -z + 1. Cg1 is the centroid of the C16–C21 ring.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

This research was supported by the Industrial Technology Devlopment Program, which was conducted by the Ministry of Knowledge Economy of the Korean Government. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2190).

References

- Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). *Bioorg. Med. Chem.* 13, 4565– 4575.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866.
- Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.
- Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2009). Acta Cryst. E65, o1596.
- Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008). Acta Cryst. E64, 02385.
- Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009). Acta Cryst. E65, 01383.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.

supporting information

Acta Cryst. (2009). E65, o3103 [doi:10.1107/S1600536809047928]

1-Methyl-2,4-bis(2-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one

P. Parthiban, V. Ramkumar and Yeon Tae Jeong

S1. Comment

3-Azabicyclononanes are an important class of heterocycles due to their broad spectrum biological activities (Jeyaraman & Avila, 1981; Hardick *et al.*, 1996; Barker *et al.*, 2005). Owing to the diverse possibilities in conformations, *viz.*, chair-chair (Parthiban *et al.*, 2008; Parthiban, Ramkumar & Jeong, 2009; Parthiban, Ramkumar, Kim *et al.*, 2009), chair-boat (Smith-Verdier *et al.*, 1983) and boat-boat (Padegimas & Kovacic, 1972) for the azabicycle, the present crystal study was undertaken to explore the conformation, stereochemistry and bonding of the title compound.

The analysis of torsion angles, asymmetry parameters and least-squares planes calculated for the title compound shows that the piperidine ring adopts a near ideal chair conformation with deviations of the ring atoms C8 and N1 from the C1/C2/C6/C7 plane by 0.655 (3) Å and -0.708 (3) Å, respectively. The smallest displacement asymmetry parameters are q2 = 0.0341 (15) Å and q3 = 0.6123 (15) Å (Nardelli, 1983). The total puckering amplitude, $Q_T = 0.6132$ (15) Å and $\theta = 3.14$ (14) ° (Cremer & Pople, 1975). The cyclohexane ring deviates from the ideal chair conformation by the deviation of ring atoms C4 and C8 from the C2/C3/C5/C6 plane by -0.697 (4) Å and 0.535 (3) Å, respectively. The smallest displacement asymmetry parameters are q2 = 0.1216 (17) Å and q3 = 0.5322 (17) Å (Nardelli, 1983); total puckering amplitude, $Q_T = 0.5460$ (16) Å, and $\theta = 12.87$ (18)° (Cremer & Pople, 1975). Hence, the title compound C₂₃H₂₇NO₃, exists in a chair-chair conformation with an equatorial orientation of the *ortho*-methoxyphenyl groups on the heterocycle, which are orientated at an angle of 39.94 (3)° with respect to each other. The crystal structure is stabilized by an intermolecular N-H··· π interaction between N1-H1A and the C16/C17/C18/C19/C20/C21 ring in a neighbouring molecule [N···centroid distance of 2.852 (3)Å; symmetry operator: 1-x,-y,1-z].

S2. Experimental

A mixture of 2-methylcyclohexanone (0.05 mol, 5.61 g) and *ortho*-methoxybenzaldehyde (0.1 mol, 13.62 g) was added to a warm solution of ammonium acetate (0.075 mol, 5.78 g) in 50 ml of absolute ethanol. The mixture was gently warmed with stirring until a yellow color was obtained during the mixing of the reactants and then allowed to stir at 303–308° K until formation of the product. At the end, the crude azabicyclic ketone was separated by filtration and washed with a 1:5 ethanol-ether mixture until the solid became colorless. Recrystallization of the compound from ethanol gave X-ray diffraction quality crystals of 1-methyl-2,4-bis(2-methoxyphenyl)-3- azabicyclo[3.3.1]nonan-9-one.

S3. Refinement

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

ORTEP diagram of the molecule, showing the atom numbering scheme, with atoms represented as 30% probability ellipsoids.

1-Methyl-2,4-bis(2-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one

Crystal data

C₂₃H₂₇NO₃ $M_r = 365.46$ Monoclinic, $P_{1/n}$ Hall symbol: -P 2yn a = 7.9569 (3) Å b = 20.8291 (9) Å c = 11.6708 (6) Å $\beta = 96.297$ (2)° V = 1922.59 (15) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\min} = 0.288, T_{\max} = 0.980$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.127$ S = 1.02 F(000) = 784 $D_x = 1.263 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4178 reflections $\theta = 2.6-28.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 298 KBlock, colourless $0.41 \times 0.24 \times 0.20 \text{ mm}$

14049 measured reflections 4608 independent reflections 3166 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 10$ $k = -27 \rightarrow 27$ $l = -15 \rightarrow 15$

4608 reflections251 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_0^2) + (0.0542P)^2 + 0.4061P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
and constrained refinement	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.23693 (17)	0.12454 (6)	0.28186 (12)	0.0323 (3)
H1	0.1669	0.1269	0.3458	0.039*
C2	0.11755 (18)	0.10977 (7)	0.16904 (12)	0.0363 (3)
C3	0.2099 (2)	0.10169 (8)	0.06003 (13)	0.0431 (4)
H3A	0.1254	0.0972	-0.0060	0.052*
H3B	0.2725	0.1408	0.0492	0.052*
C4	0.3315 (2)	0.04531 (8)	0.06032 (14)	0.0473 (4)
H4A	0.4347	0.0557	0.1089	0.057*
H4B	0.3604	0.0385	-0.0174	0.057*
C5	0.2575 (2)	-0.01655 (8)	0.10382 (14)	0.0465 (4)
H5A	0.3483	-0.0473	0.1211	0.056*
H5B	0.1790	-0.0345	0.0427	0.056*
C6	0.16498 (18)	-0.00768 (7)	0.21184 (13)	0.0372 (3)
H6	0.1050	-0.0475	0.2256	0.045*
C7	0.27979 (17)	0.01007 (6)	0.32297 (12)	0.0321 (3)
H7	0.2089	0.0140	0.3862	0.039*
C8	0.03777 (19)	0.04528 (7)	0.19078 (12)	0.0383 (3)
C9	0.33357 (18)	0.18729 (6)	0.27865 (12)	0.0334 (3)
C10	0.49093 (19)	0.18943 (7)	0.23764 (14)	0.0407 (4)
H10	0.5344	0.1522	0.2082	0.049*
C11	0.5850 (2)	0.24549 (8)	0.23944 (15)	0.0479 (4)
H11	0.6903	0.2457	0.2119	0.058*
C12	0.5214 (2)	0.30076 (8)	0.28224 (16)	0.0505 (4)
H12	0.5839	0.3385	0.2836	0.061*
C13	0.3655 (2)	0.30062 (7)	0.32316 (14)	0.0452 (4)

H13	0.3230	0.3383	0.3516	0.054*
C14	0.27187 (19)	0.24449 (7)	0.32211 (12)	0.0370 (3)
C15	-0.0179 (2)	0.16144 (8)	0.14796 (16)	0.0530 (4)
H15A	-0.0981	0.1490	0.0843	0.079*
H15B	0.0340	0.2014	0.1305	0.079*
H15C	-0.0748	0.1665	0.2158	0.079*
C16	0.41183 (18)	-0.04090 (6)	0.35486 (12)	0.0325 (3)
C17	0.36550 (18)	-0.09743 (7)	0.40848 (12)	0.0355 (3)
C18	0.4828 (2)	-0.14549 (7)	0.43706 (13)	0.0432 (4)
H18	0.4506	-0.1831	0.4717	0.052*
C19	0.6482 (2)	-0.13728 (8)	0.41378 (14)	0.0487 (4)
H19	0.7271	-0.1695	0.4330	0.058*
C20	0.6970 (2)	-0.08216 (8)	0.36268 (15)	0.0497 (4)
H20	0.8087	-0.0767	0.3481	0.060*
C21	0.57849 (19)	-0.03438 (7)	0.33286 (14)	0.0421 (4)
H21	0.6118	0.0028	0.2974	0.050*
C22	0.0402 (2)	0.29848 (8)	0.39536 (17)	0.0566 (5)
H22A	0.1056	0.3174	0.4608	0.085*
H22B	-0.0717	0.2894	0.4143	0.085*
H22C	0.0339	0.3278	0.3316	0.085*
C23	0.1527 (3)	-0.15186 (11)	0.49954 (19)	0.0793 (7)
H23A	0.1658	-0.1920	0.4610	0.119*
H23B	0.0368	-0.1466	0.5134	0.119*
H23C	0.2235	-0.1515	0.5717	0.119*
N1	0.35903 (15)	0.07229 (5)	0.30669 (11)	0.0324 (3)
01	-0.11245 (14)	0.03744 (6)	0.19326 (12)	0.0606 (4)
O2	0.11835 (14)	0.24067 (5)	0.36491 (10)	0.0498 (3)
O3	0.19994 (13)	-0.10095 (5)	0.42960 (10)	0.0484 (3)
H1A	0.4203 (18)	0.0824 (7)	0.3696 (13)	0.032 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0345 (7)	0.0274 (7)	0.0357 (7)	0.0025 (5)	0.0074 (6)	0.0021 (6)
C2	0.0341 (8)	0.0356 (8)	0.0387 (8)	0.0037 (6)	0.0025 (6)	0.0037 (6)
C3	0.0492 (9)	0.0446 (9)	0.0360 (8)	-0.0024 (7)	0.0065 (7)	0.0062 (7)
C4	0.0524 (10)	0.0531 (10)	0.0386 (8)	0.0012 (8)	0.0149 (7)	-0.0044 (7)
C5	0.0556 (10)	0.0417 (9)	0.0415 (9)	0.0027 (7)	0.0019 (7)	-0.0094 (7)
C6	0.0371 (8)	0.0303 (7)	0.0437 (8)	-0.0074 (6)	0.0027 (6)	-0.0005 (6)
C7	0.0336 (7)	0.0281 (7)	0.0356 (7)	-0.0004 (6)	0.0079 (6)	0.0008 (6)
C8	0.0346 (8)	0.0454 (9)	0.0344 (7)	-0.0040 (7)	0.0021 (6)	0.0012 (6)
C9	0.0375 (8)	0.0278 (7)	0.0352 (7)	0.0011 (6)	0.0047 (6)	0.0033 (6)
C10	0.0406 (8)	0.0338 (8)	0.0490 (9)	0.0025 (6)	0.0104 (7)	0.0025 (7)
C11	0.0397 (9)	0.0431 (9)	0.0625 (11)	-0.0038 (7)	0.0124 (8)	0.0071 (8)
C12	0.0538 (10)	0.0348 (9)	0.0637 (11)	-0.0107 (7)	0.0096 (8)	0.0045 (8)
C13	0.0571 (10)	0.0285 (8)	0.0511 (9)	0.0001 (7)	0.0099 (8)	-0.0009 (7)
C14	0.0426 (8)	0.0314 (7)	0.0379 (8)	0.0021 (6)	0.0085 (6)	0.0037 (6)
C15	0.0466 (10)	0.0492 (10)	0.0613 (11)	0.0119 (8)	-0.0018 (8)	0.0049 (8)

C16	0.0365 (8)	0.0272 (7)	0.0340 (7)	0.0002 (6)	0.0053 (6)	-0.0024 (6)	
C17	0.0404 (8)	0.0320 (7)	0.0337 (7)	-0.0031 (6)	0.0025 (6)	-0.0014 (6)	
C18	0.0578 (10)	0.0298 (7)	0.0408 (8)	0.0021 (7)	0.0006 (7)	0.0024 (6)	
C19	0.0536 (10)	0.0414 (9)	0.0498 (9)	0.0186 (8)	-0.0003 (8)	-0.0031 (7)	
C20	0.0395 (9)	0.0502 (10)	0.0608 (10)	0.0094 (7)	0.0116 (8)	-0.0031 (8)	
C21	0.0401 (8)	0.0365 (8)	0.0510 (9)	0.0002 (7)	0.0117 (7)	0.0023 (7)	
C22	0.0599 (11)	0.0430 (10)	0.0702 (12)	0.0106 (8)	0.0220 (9)	-0.0069 (8)	
C23	0.0611 (13)	0.0974 (16)	0.0793 (14)	-0.0177 (11)	0.0073 (11)	0.0504 (13)	
N1	0.0324 (6)	0.0256 (6)	0.0383 (7)	-0.0002 (5)	-0.0004(5)	-0.0006 (5)	
01	0.0336 (6)	0.0681 (8)	0.0795 (9)	-0.0079 (6)	0.0039 (6)	0.0119 (7)	
O2	0.0552 (7)	0.0316 (6)	0.0678 (8)	0.0036 (5)	0.0292 (6)	-0.0024 (5)	
O3	0.0429 (6)	0.0469 (7)	0.0564 (7)	-0.0067 (5)	0.0093 (5)	0.0167 (5)	

Geometric parameters (Å, °)

C1—N1	1.4663 (17)	C12—C13	1.377 (2)
С1—С9	1.5191 (19)	C12—H12	0.9300
C1—C2	1.5672 (19)	C13—C14	1.386 (2)
C1—H1	0.9800	C13—H13	0.9300
C2—C8	1.519 (2)	C14—O2	1.3719 (17)
C2—C15	1.524 (2)	C15—H15A	0.9600
С2—С3	1.547 (2)	C15—H15B	0.9600
С3—С4	1.521 (2)	C15—H15C	0.9600
С3—НЗА	0.9700	C16—C21	1.385 (2)
С3—Н3В	0.9700	C16—C17	1.4016 (19)
C4—C5	1.526 (2)	C17—O3	1.3685 (17)
C4—H4A	0.9700	C17—C18	1.384 (2)
C4—H4B	0.9700	C18—C19	1.384 (2)
С5—С6	1.539 (2)	C18—H18	0.9300
C5—H5A	0.9700	C19—C20	1.369 (2)
С5—Н5В	0.9700	C19—H19	0.9300
С6—С8	1.499 (2)	C20—C21	1.389 (2)
С6—С7	1.547 (2)	C20—H20	0.9300
С6—Н6	0.9800	C21—H21	0.9300
C7—N1	1.4628 (17)	C22—O2	1.4181 (18)
C7—C16	1.5111 (19)	C22—H22A	0.9600
С7—Н7	0.9800	C22—H22B	0.9600
C8—O1	1.2099 (18)	C22—H22C	0.9600
C9—C10	1.389 (2)	C23—O3	1.414 (2)
С9—С14	1.4044 (19)	C23—H23A	0.9600
C10-C11	1.386 (2)	C23—H23B	0.9600
C10—H10	0.9300	C23—H23C	0.9600
C11—C12	1.373 (2)	N1—H1A	0.862 (15)
C11—H11	0.9300		
N1—C1—C9	108.50 (11)	C12—C11—H11	120.3
N1-C1-C2	110.35 (11)	C10—C11—H11	120.3
C9—C1—C2	114.20 (11)	C11—C12—C13	120.41 (15)

N1—C1—H1	107.9	C11—C12—H12	119.8
С9—С1—Н1	107.9	C13—C12—H12	119.8
C2—C1—H1	107.9	C12—C13—C14	120.17 (15)
C8—C2—C15	110.51 (13)	C12—C13—H13	119.9
C8—C2—C3	106.63 (12)	C14—C13—H13	119.9
C15—C2—C3	109.61 (13)	O2—C14—C13	123.04 (13)
C8—C2—C1	105.02 (11)	O2—C14—C9	116.28 (12)
C15—C2—C1	110.47 (12)	C13—C14—C9	120.67 (14)
C3—C2—C1	114.42 (12)	С2—С15—Н15А	109.5
C4—C3—C2	116.20 (12)	C2—C15—H15B	109.5
С4—С3—НЗА	108.2	H15A—C15—H15B	109.5
С2—С3—НЗА	108.2	C2—C15—H15C	109.5
C4—C3—H3B	108.2	H15A—C15—H15C	109.5
С2—С3—Н3В	108.2	H15B—C15—H15C	109.5
НЗА—СЗ—НЗВ	107.4	C21—C16—C17	117.99 (13)
C3—C4—C5	112.60 (14)	C21—C16—C7	122.65 (12)
C3—C4—H4A	109.1	C17—C16—C7	119.37 (13)
C5—C4—H4A	109.1	03-017-018	123.70 (13)
C3—C4—H4B	109.1	O3—C17—C16	115.52 (12)
C5—C4—H4B	109.1	C18—C17—C16	120.78 (14)
H4A—C4—H4B	107.8	C19—C18—C17	119.62 (14)
C4—C5—C6	114.05 (12)	C19—C18—H18	120.2
C4—C5—H5A	108.7	C17—C18—H18	120.2
С6—С5—Н5А	108.7	C20—C19—C18	120.67 (14)
C4—C5—H5B	108.7	С20—С19—Н19	119.7
С6—С5—Н5В	108.7	С18—С19—Н19	119.7
H5A—C5—H5B	107.6	C19—C20—C21	119.53 (16)
C8—C6—C5	109.21 (12)	С19—С20—Н20	120.2
C8—C6—C7	106.72 (11)	С21—С20—Н20	120.2
C5—C6—C7	115.07 (12)	C16—C21—C20	121.40 (14)
С8—С6—Н6	108.6	C16—C21—H21	119.3
С5—С6—Н6	108.6	C20—C21—H21	119.3
С7—С6—Н6	108.6	O2—C22—H22A	109.5
N1—C7—C16	110.89 (11)	O2—C22—H22B	109.5
N1—C7—C6	109.03 (11)	H22A—C22—H22B	109.5
C16—C7—C6	111.68 (11)	O2—C22—H22C	109.5
N1—C7—H7	108.4	H22A—C22—H22C	109.5
С16—С7—Н7	108.4	H22B—C22—H22C	109.5
С6—С7—Н7	108.4	O3—C23—H23A	109.5
O1—C8—C6	123.22 (14)	O3—C23—H23B	109.5
O1—C8—C2	123.74 (14)	H23A—C23—H23B	109.5
C6—C8—C2	113.02 (12)	O3—C23—H23C	109.5
C10—C9—C14	117.47 (13)	H23A—C23—H23C	109.5
C10—C9—C1	120.91 (12)	H23B—C23—H23C	109.5
C14—C9—C1	121.54 (13)	C7—N1—C1	113.43 (11)
C11—C10—C9	121.82 (14)	C7—N1—H1A	108.5 (10)
C11—C10—H10	119.1	C1—N1—H1A	106.7 (10)
C9—C10—H10	119.1	C14—O2—C22	118.30 (12)

C12—C11—C10	119.47 (15)	C17—O3—C23	117.79 (13)
N1—C1—C2—C8	56.53 (14)	C9—C10—C11—C12	-0.4 (3)
C9—C1—C2—C8	179.06 (12)	C10-C11-C12-C13	0.0 (3)
N1—C1—C2—C15	175.70 (12)	C11—C12—C13—C14	0.4 (3)
C9—C1—C2—C15	-61.77 (16)	C12—C13—C14—O2	177.88 (14)
N1—C1—C2—C3	-60.04 (15)	C12—C13—C14—C9	-0.5 (2)
C9—C1—C2—C3	62.49 (16)	C10—C9—C14—O2	-178.29 (13)
C8—C2—C3—C4	-51.75 (17)	C1—C9—C14—O2	-1.4 (2)
C15—C2—C3—C4	-171.39 (14)	C10-C9-C14-C13	0.2 (2)
C1—C2—C3—C4	63.89 (17)	C1—C9—C14—C13	177.06 (13)
C2—C3—C4—C5	44.90 (19)	N1-C7-C16-C21	-20.15 (19)
C3—C4—C5—C6	-43.79 (19)	C6-C7-C16-C21	101.66 (15)
C4—C5—C6—C8	51.92 (17)	N1-C7-C16-C17	160.12 (12)
C4—C5—C6—C7	-68.05 (17)	C6—C7—C16—C17	-78.06 (16)
C8—C6—C7—N1	-58.41 (14)	C21—C16—C17—O3	179.13 (12)
C5-C6-C7-N1	62.92 (15)	C7—C16—C17—O3	-1.14 (19)
C8—C6—C7—C16	178.70 (11)	C21—C16—C17—C18	-0.8 (2)
C5—C6—C7—C16	-59.97 (16)	C7—C16—C17—C18	178.93 (13)
C5—C6—C8—O1	119.23 (16)	O3—C17—C18—C19	-179.09 (14)
C7—C6—C8—O1	-115.79 (16)	C16—C17—C18—C19	0.8 (2)
C5—C6—C8—C2	-62.18 (15)	C17—C18—C19—C20	-0.1 (2)
C7—C6—C8—C2	62.80 (15)	C18—C19—C20—C21	-0.7 (3)
C15—C2—C8—O1	-1.6 (2)	C17—C16—C21—C20	0.0 (2)
C3—C2—C8—O1	-120.63 (16)	C7—C16—C21—C20	-179.71 (14)
C1—C2—C8—O1	117.57 (16)	C19—C20—C21—C16	0.7 (3)
C15—C2—C8—C6	179.84 (13)	C16—C7—N1—C1	-176.79 (11)
C3—C2—C8—C6	60.79 (15)	C6—C7—N1—C1	59.86 (15)
C1—C2—C8—C6	-61.01 (15)	C9—C1—N1—C7	174.42 (11)
N1—C1—C9—C10	34.09 (17)	C2—C1—N1—C7	-59.77 (15)
C2—C1—C9—C10	-89.44 (16)	C13—C14—O2—C22	9.9 (2)
N1—C1—C9—C14	-142.65 (13)	C9—C14—O2—C22	-171.66 (14)
C2-C1-C9-C14	93.82 (16)	C18—C17—O3—C23	9.8 (2)
C14—C9—C10—C11	0.2 (2)	C16—C17—O3—C23	-170.10 (16)
C1—C9—C10—C11	-176.64 (14)		

Hydrogen-bond	geometry	(Å,	°)
	0	(,	

D—H···A	D—H	Н…А	D····A	D—H···A
N1—H1A···Cg1 ⁱ	0.862 (15)	2.852 (3)	3.6276 (14)	150.6 (12)

Symmetry code: (i) -x+1, -y, -z+1.