metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis[tris­­(4-meth­oxy­phen­yl)phosphine]palladium(II) benzene monosolvate

aUniversity of Johannesburg, Department of Chemistry, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: cvanblerk@uj.ac.za

(Received 23 September 2009; accepted 3 November 2009; online 7 November 2009)

The structure of the title compound, [PdCl2(C21H21O3P)2]·C6H6, shows a square-planar geometry for the PdII atom within a Cl2[P(PhOMe)3]2 ligand set. The crystal structure contains benzene as solvent. The PdII atom sits on a centre of inversion and therefore the asymmetric unit contains the PdII atom, one Cl atom, one tris­(4-methoxy­phen­yl)phosphine ligand and one half of the benzene solvent mol­ecule.

Related literature

For related structures and literature on similar palladium complexes, see: Robertson & Cole-Hamilton (2002[Robertson, R. A. M. & Cole-Hamilton, D. J. (2002). Coord. Chem. Rev. 225, 67-90.]); Van Leeuwen et al. (2003[Van Leeuwen, P. W. N. M., Zuideveld, M. A., Swennenhuis, B. H., Freixa, Z., Kamer, P. C. J., Goubitz, K., Fraanje, J., Lutz, M. & Spek, A. L. (2003). J. Am. Chem. Soc. 125, 5523-5539.]); Williams et al. (2008[Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560-563.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C21H21O3P)2]·C6H6

  • Mr = 960.10

  • Triclinic, [P \overline 1]

  • a = 7.9338 (2) Å

  • b = 12.1886 (3) Å

  • c = 12.5268 (3) Å

  • α = 85.981 (3)°

  • β = 78.840 (2)°

  • γ = 76.155 (2)°

  • V = 1153.57 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 295 K

  • 0.34 × 0.24 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (APEX2 AX-Scale; Bruker, 2008[Bruker (2008). SAINT and APEX2 AX-Scale. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 0.939

  • 31847 measured reflections

  • 5781 independent reflections

  • 4546 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.08

  • 5781 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: SMART-NT (Bruker, 1999[Bruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT and APEX2 AX-Scale. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The palladium-catalysed methoxycarbonylation (Robertson & Cole-Hamilton, 2002) of 1-alkenes is an active area of research. The palladium complexes (Ar3P)2PdX2 (X = Cl, DMS, OTf etc.) are the preferred catalysts but most quantitative studies have been carried out with complexes where the phosphine ligand is limited to triphenylphosphine. The X-ray structures (Van Leeuwen et al., 2003 and Williams et al., 2008) of several of this class of palladium(II) complexes have been determined. Our studies (Williams et al., 2008) on the effect of substituents on the triarylphosphine ligands on regioselectivity and reaction rate showed trans-dichloro-bis[tris-(4-methoxy)phosphine] palladium(II) to be an exceptionally efficient catalyst for the production of linear esters from 1-alkenes at high rates.

The structure of the title compound (I), [PdCl2(C42H42P2O6).C6H6] shows a square planar geometry for the PdII atom within the Cl2(P(PhOMe)3) ligand set. The crystal structure contains benzene as a solvate. The solvent molecule exhibits noticeable disorder but this disorder was not modelled. The palladium atom sits on a centre of inversion and therefore the asymmetric unit contains the palladium atom, one chlorine atom, one tris-(4-methoxyphenyl)phenylphosphine ligand and one half of the benzene solvent molecule.

Related literature top

For related structures and literature on similar palladium complexes, see: Robertson & Cole-Hamilton (2002); Van Leeuwen et al. (2003); Williams et al. (2008).

Experimental top

Tris-(4-methoxyphenyl)phosphine (704 mg, 0.2 mmol) was added to a solution of lithium chloride (85 mg, 0.2 mmol) and palladium(II) chloride (177 mg, 0.1 mmol) in 15 ml me thanol. The mixture was heated under reflux in an atmosphere of nitrogen for 1 h resulting in the formation of the product as a yellow precipitate. The solution was allowed to cool to room temperature and the product (710 mg) was collected by filtration, washed with fresh methanol and dried under vacuum. The product was recrystallized from 1:1 ethyl acetate:benzene to furnish yellow plates (m. p. > 250°C, decomp.) A suitable single-crystal was selected for the single-crystal X-ray diffraction analysis.

Refinement top

H atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). For (I), the highest peak in the final difference map is 0.98Å from C15 and the deepest hole is 0.01Å from Pd1.

Computing details top

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Atoms labelled with (i) are at symmetry position (– x, – y, – z) and atoms labelled with (ii) are at symmetry position (– x + 1, – y + 1, – z + 1)
trans-Dichloridobis[tris(4-methoxyphenyl)phosphine]palladium(II) benzene monosolvate top
Crystal data top
[PdCl2(C21H21O3P)2]·C6H6Z = 1
Mr = 960.10F(000) = 494
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9338 (2) ÅCell parameters from 9954 reflections
b = 12.1886 (3) Åθ = 1.7–28.3°
c = 12.5268 (3) ŵ = 0.63 mm1
α = 85.981 (3)°T = 295 K
β = 78.840 (2)°Flat, yellow
γ = 76.155 (2)°0.34 × 0.24 × 0.10 mm
V = 1153.57 (5) Å3
Data collection top
Bruker SMART CCD
diffractometer
5781 independent reflections
Radiation source: fine-focus sealed tube4546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(APEX2 Ax-Scale; Bruker, 2008)
h = 1010
Tmin = 0.813, Tmax = 0.939k = 1616
31847 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.04P)2 + 0.8985P]
where P = (Fo2 + 2Fc2)/3
5781 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[PdCl2(C21H21O3P)2]·C6H6γ = 76.155 (2)°
Mr = 960.10V = 1153.57 (5) Å3
Triclinic, P1Z = 1
a = 7.9338 (2) ÅMo Kα radiation
b = 12.1886 (3) ŵ = 0.63 mm1
c = 12.5268 (3) ÅT = 295 K
α = 85.981 (3)°0.34 × 0.24 × 0.10 mm
β = 78.840 (2)°
Data collection top
Bruker SMART CCD
diffractometer
5781 independent reflections
Absorption correction: multi-scan
(APEX2 Ax-Scale; Bruker, 2008)
4546 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.939Rint = 0.046
31847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.08Δρmax = 1.26 e Å3
5781 reflectionsΔρmin = 0.53 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4425 (16)0.4281 (7)0.5761 (6)0.155 (3)
H10.40460.37800.62950.186*
C20.5827 (15)0.4708 (8)0.5889 (6)0.157 (3)
H20.63610.45030.64950.188*
C30.3558 (14)0.4537 (7)0.4915 (8)0.164 (3)
H30.26080.42320.48660.197*
C110.0548 (3)0.1003 (2)0.2660 (2)0.0322 (5)
C120.0842 (4)0.0505 (3)0.2715 (2)0.0394 (6)
H120.11800.00080.21620.047*
C130.1725 (4)0.0744 (3)0.3587 (2)0.0457 (7)
H130.26500.04060.36140.055*
C140.1248 (4)0.1475 (3)0.4413 (2)0.0415 (6)
C150.0146 (4)0.1971 (3)0.4377 (2)0.0491 (8)
H150.04900.24590.49370.059*
C160.1017 (4)0.1736 (3)0.3504 (2)0.0451 (7)
H160.19410.20760.34810.054*
C170.1700 (5)0.2373 (4)0.6136 (3)0.0663 (10)
H17A0.17780.31120.58820.099*
H17B0.24760.24290.66470.099*
H17C0.05080.20580.64840.099*
C210.2612 (3)0.1876 (2)0.1422 (2)0.0319 (5)
C220.4426 (4)0.1803 (2)0.1504 (2)0.0379 (6)
H220.52200.11070.16270.046*
C230.5046 (4)0.2750 (3)0.1406 (3)0.0462 (7)
H230.62520.26850.14600.055*
C240.3887 (4)0.3800 (2)0.1227 (2)0.0419 (7)
C250.2087 (4)0.3885 (2)0.1136 (2)0.0417 (7)
H250.12970.45820.10110.050*
C260.1472 (4)0.2935 (2)0.1233 (2)0.0383 (6)
H260.02640.30040.11690.046*
C270.3489 (6)0.5791 (3)0.1038 (4)0.0781 (13)
H27A0.29000.59750.16500.117*
H27B0.41680.63360.09970.117*
H27C0.26280.58010.03820.117*
C310.3704 (3)0.0450 (2)0.2019 (2)0.0305 (5)
C320.4241 (4)0.0750 (2)0.3103 (2)0.0381 (6)
H320.36370.03480.36270.046*
C330.5670 (4)0.1644 (3)0.3409 (2)0.0465 (7)
H330.60170.18400.41360.056*
C340.6591 (4)0.2253 (2)0.2634 (3)0.0408 (6)
C350.6116 (4)0.1934 (3)0.1561 (3)0.0438 (7)
H350.67660.23080.10460.053*
C360.4660 (4)0.1053 (2)0.1256 (2)0.0406 (6)
H360.43150.08610.05280.049*
C370.8756 (5)0.3895 (3)0.2234 (4)0.0722 (11)
H37A0.92910.34830.18220.108*
H37B0.96440.44950.26040.108*
H37C0.78820.42060.17510.108*
O10.2204 (3)0.1654 (2)0.52266 (18)0.0592 (6)
O20.4641 (3)0.46844 (19)0.1165 (2)0.0626 (7)
O30.7933 (3)0.31468 (19)0.3017 (2)0.0576 (6)
P10.17506 (8)0.06402 (5)0.15376 (5)0.02933 (15)
Cl10.05138 (11)0.16975 (6)0.08394 (6)0.04878 (19)
Pd10.00000.00000.00000.02850 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.264 (12)0.110 (5)0.087 (5)0.034 (6)0.030 (6)0.009 (4)
C20.244 (11)0.137 (7)0.080 (5)0.018 (7)0.037 (6)0.015 (5)
C30.256 (11)0.129 (6)0.109 (6)0.046 (7)0.024 (7)0.038 (5)
C110.0305 (13)0.0349 (14)0.0304 (13)0.0055 (11)0.0069 (10)0.0006 (10)
C120.0387 (15)0.0453 (16)0.0373 (14)0.0170 (13)0.0083 (12)0.0075 (12)
C130.0408 (16)0.0573 (19)0.0461 (16)0.0236 (14)0.0117 (13)0.0031 (14)
C140.0414 (15)0.0484 (17)0.0375 (15)0.0109 (13)0.0138 (12)0.0001 (13)
C150.0554 (19)0.066 (2)0.0372 (15)0.0340 (16)0.0158 (14)0.0154 (14)
C160.0459 (16)0.0534 (18)0.0454 (16)0.0264 (14)0.0173 (13)0.0123 (14)
C170.078 (3)0.084 (3)0.051 (2)0.036 (2)0.0331 (19)0.0202 (19)
C210.0367 (14)0.0303 (13)0.0295 (12)0.0101 (11)0.0070 (10)0.0036 (10)
C220.0368 (14)0.0323 (14)0.0446 (15)0.0063 (11)0.0088 (12)0.0016 (12)
C230.0355 (15)0.0440 (17)0.063 (2)0.0147 (13)0.0126 (14)0.0005 (14)
C240.0517 (17)0.0324 (15)0.0478 (16)0.0156 (13)0.0181 (14)0.0039 (12)
C250.0450 (16)0.0287 (14)0.0496 (16)0.0043 (12)0.0109 (13)0.0018 (12)
C260.0340 (14)0.0343 (14)0.0464 (16)0.0079 (11)0.0089 (12)0.0042 (12)
C270.079 (3)0.0346 (18)0.129 (4)0.0176 (18)0.033 (3)0.000 (2)
C310.0321 (13)0.0273 (13)0.0333 (13)0.0080 (10)0.0079 (10)0.0000 (10)
C320.0359 (14)0.0416 (16)0.0358 (14)0.0051 (12)0.0091 (11)0.0008 (12)
C330.0428 (16)0.0565 (19)0.0360 (15)0.0031 (14)0.0041 (12)0.0101 (13)
C340.0316 (14)0.0369 (15)0.0525 (17)0.0071 (12)0.0040 (12)0.0053 (13)
C350.0431 (16)0.0401 (16)0.0491 (17)0.0053 (13)0.0182 (13)0.0048 (13)
C360.0462 (16)0.0403 (16)0.0345 (14)0.0048 (13)0.0124 (12)0.0008 (12)
C370.061 (2)0.054 (2)0.090 (3)0.0119 (18)0.018 (2)0.001 (2)
O10.0633 (15)0.0806 (17)0.0476 (13)0.0328 (13)0.0299 (11)0.0164 (12)
O20.0640 (15)0.0374 (12)0.0955 (19)0.0198 (11)0.0262 (14)0.0028 (12)
O30.0453 (12)0.0516 (13)0.0654 (15)0.0089 (10)0.0076 (11)0.0073 (11)
P10.0311 (3)0.0287 (3)0.0285 (3)0.0080 (3)0.0054 (3)0.0009 (3)
Cl10.0675 (5)0.0326 (4)0.0444 (4)0.0180 (3)0.0051 (3)0.0086 (3)
Pd10.03329 (16)0.02494 (15)0.02737 (15)0.00770 (11)0.00467 (11)0.00023 (10)
Geometric parameters (Å, º) top
C1—C31.351 (11)C24—O21.366 (4)
C1—C21.375 (12)C24—C251.390 (4)
C1—H10.9300C25—C261.380 (4)
C2—C3i1.413 (11)C25—H250.9300
C2—H20.9300C26—H260.9300
C3—C2i1.413 (11)C27—O21.436 (4)
C3—H30.9300C27—H27A0.9600
C11—C161.388 (4)C27—H27B0.9600
C11—C121.395 (4)C27—H27C0.9600
C11—P11.820 (3)C31—C321.389 (4)
C12—C131.387 (4)C31—C361.394 (4)
C12—H120.9300C31—P11.815 (3)
C13—C141.374 (4)C32—C331.386 (4)
C13—H130.9300C32—H320.9300
C14—O11.360 (3)C33—C341.393 (4)
C14—C151.392 (4)C33—H330.9300
C15—C161.382 (4)C34—O31.368 (3)
C15—H150.9300C34—C351.381 (4)
C16—H160.9300C35—C361.388 (4)
C17—O11.441 (4)C35—H350.9300
C17—H17A0.9600C36—H360.9300
C17—H17B0.9600C37—O31.434 (4)
C17—H17C0.9600C37—H37A0.9600
C21—C261.394 (4)C37—H37B0.9600
C21—C221.404 (4)C37—H37C0.9600
C21—P11.821 (3)P1—Pd12.3496 (6)
C22—C231.380 (4)Cl1—Pd12.2995 (7)
C22—H220.9300Pd1—Cl1ii2.2995 (7)
C23—C241.389 (4)Pd1—P1ii2.3496 (6)
C23—H230.9300
C3—C1—C2124.8 (9)C25—C26—C21121.8 (3)
C3—C1—H1117.6C25—C26—H26119.1
C2—C1—H1117.6C21—C26—H26119.1
C1—C2—C3i118.8 (8)O2—C27—H27A109.5
C1—C2—H2120.6O2—C27—H27B109.5
C3i—C2—H2120.6H27A—C27—H27B109.5
C1—C3—C2i116.3 (9)O2—C27—H27C109.5
C1—C3—H3121.8H27A—C27—H27C109.5
C2i—C3—H3121.8H27B—C27—H27C109.5
C16—C11—C12118.0 (2)C32—C31—C36118.4 (2)
C16—C11—P1121.9 (2)C32—C31—P1123.13 (19)
C12—C11—P1120.1 (2)C36—C31—P1118.4 (2)
C13—C12—C11120.5 (3)C33—C32—C31120.5 (3)
C13—C12—H12119.7C33—C32—H32119.8
C11—C12—H12119.7C31—C32—H32119.8
C14—C13—C12120.7 (3)C32—C33—C34120.4 (3)
C14—C13—H13119.6C32—C33—H33119.8
C12—C13—H13119.6C34—C33—H33119.8
O1—C14—C13116.0 (3)O3—C34—C35124.8 (3)
O1—C14—C15124.5 (3)O3—C34—C33115.6 (3)
C13—C14—C15119.5 (3)C35—C34—C33119.7 (3)
C16—C15—C14119.6 (3)C34—C35—C36119.5 (3)
C16—C15—H15120.2C34—C35—H35120.2
C14—C15—H15120.2C36—C35—H35120.2
C15—C16—C11121.6 (3)C35—C36—C31121.4 (3)
C15—C16—H16119.2C35—C36—H36119.3
C11—C16—H16119.2C31—C36—H36119.3
O1—C17—H17A109.5O3—C37—H37A109.5
O1—C17—H17B109.5O3—C37—H37B109.5
H17A—C17—H17B109.5H37A—C37—H37B109.5
O1—C17—H17C109.5O3—C37—H37C109.5
H17A—C17—H17C109.5H37A—C37—H37C109.5
H17B—C17—H17C109.5H37B—C37—H37C109.5
C26—C21—C22117.5 (2)C14—O1—C17118.0 (2)
C26—C21—P1120.6 (2)C24—O2—C27117.4 (3)
C22—C21—P1122.0 (2)C34—O3—C37117.7 (3)
C23—C22—C21120.9 (3)C31—P1—C11106.73 (12)
C23—C22—H22119.5C31—P1—C21104.02 (12)
C21—C22—H22119.5C11—P1—C21104.27 (12)
C22—C23—C24120.6 (3)C31—P1—Pd1111.03 (8)
C22—C23—H23119.7C11—P1—Pd1111.08 (9)
C24—C23—H23119.7C21—P1—Pd1118.81 (9)
O2—C24—C23115.9 (3)Cl1ii—Pd1—Cl1180.00 (4)
O2—C24—C25124.9 (3)Cl1ii—Pd1—P188.38 (2)
C23—C24—C25119.2 (3)Cl1—Pd1—P191.62 (2)
C26—C25—C24120.0 (3)Cl1ii—Pd1—P1ii91.62 (2)
C26—C25—H25120.0Cl1—Pd1—P1ii88.38 (2)
C24—C25—H25120.0P1—Pd1—P1ii180.00 (3)
C3—C1—C2—C3i0.6 (15)P1—C31—C36—C35176.8 (2)
C2—C1—C3—C2i0.5 (15)C13—C14—O1—C17177.2 (3)
C16—C11—C12—C130.3 (4)C15—C14—O1—C172.6 (5)
P1—C11—C12—C13177.6 (2)C23—C24—O2—C27176.8 (3)
C11—C12—C13—C140.0 (5)C25—C24—O2—C272.5 (5)
C12—C13—C14—O1179.7 (3)C35—C34—O3—C378.5 (5)
C12—C13—C14—C150.6 (5)C33—C34—O3—C37171.3 (3)
O1—C14—C15—C16179.4 (3)C32—C31—P1—C1110.3 (3)
C13—C14—C15—C160.9 (5)C36—C31—P1—C11166.3 (2)
C14—C15—C16—C110.6 (5)C32—C31—P1—C2199.6 (2)
C12—C11—C16—C150.0 (5)C36—C31—P1—C2183.8 (2)
P1—C11—C16—C15177.2 (3)C32—C31—P1—Pd1131.5 (2)
C26—C21—C22—C230.3 (4)C36—C31—P1—Pd145.2 (2)
P1—C21—C22—C23179.5 (2)C16—C11—P1—C3180.9 (3)
C21—C22—C23—C240.2 (5)C12—C11—P1—C3196.3 (2)
C22—C23—C24—O2178.6 (3)C16—C11—P1—C2128.8 (3)
C22—C23—C24—C250.6 (5)C12—C11—P1—C21154.0 (2)
O2—C24—C25—C26178.8 (3)C16—C11—P1—Pd1157.9 (2)
C23—C24—C25—C260.4 (4)C12—C11—P1—Pd124.9 (2)
C24—C25—C26—C210.1 (4)C26—C21—P1—C31170.1 (2)
C22—C21—C26—C250.5 (4)C22—C21—P1—C3110.8 (2)
P1—C21—C26—C25179.7 (2)C26—C21—P1—C1158.4 (2)
C36—C31—C32—C331.4 (4)C22—C21—P1—C11122.5 (2)
P1—C31—C32—C33175.3 (2)C26—C21—P1—Pd165.9 (2)
C31—C32—C33—C340.2 (5)C22—C21—P1—Pd1113.2 (2)
C32—C33—C34—O3177.4 (3)C31—P1—Pd1—Cl1ii41.94 (9)
C32—C33—C34—C352.4 (5)C11—P1—Pd1—Cl1ii76.66 (10)
O3—C34—C35—C36176.1 (3)C21—P1—Pd1—Cl1ii162.45 (10)
C33—C34—C35—C363.7 (5)C31—P1—Pd1—Cl1138.06 (9)
C34—C35—C36—C312.6 (5)C11—P1—Pd1—Cl1103.34 (10)
C32—C31—C36—C350.0 (4)C21—P1—Pd1—Cl117.55 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C21H21O3P)2]·C6H6
Mr960.10
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.9338 (2), 12.1886 (3), 12.5268 (3)
α, β, γ (°)85.981 (3), 78.840 (2), 76.155 (2)
V3)1153.57 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.34 × 0.24 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(APEX2 Ax-Scale; Bruker, 2008)
Tmin, Tmax0.813, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
31847, 5781, 4546
Rint0.046
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.08
No. of reflections5781
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 0.53

Computer programs: SMART-NT (Bruker, 1999), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).

 

Acknowledgements

The authors acknowledge the University of the Witwatersrand for their facilities and the use of the diffractometer in the Jan Boeyens Structural Chemistry Laboratory.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SAINT and APEX2 AX-Scale. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRobertson, R. A. M. & Cole-Hamilton, D. J. (2002). Coord. Chem. Rev. 225, 67–90.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Leeuwen, P. W. N. M., Zuideveld, M. A., Swennenhuis, B. H., Freixa, Z., Kamer, P. C. J., Goubitz, K., Fraanje, J., Lutz, M. & Spek, A. L. (2003). J. Am. Chem. Soc. 125, 5523–5539.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWilliams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560–563.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds