metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methanol{2-meth­­oxy-6-[(2-oxidoprop­yl)imino­meth­yl]phenolato}dioxidomolyb­denum(VI)

aChemistry Department, Shahid Bahonar University, Kerman, Iran, and bInstitute of Physics, University of Neuchαtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: i_shoaie@yahoo.com

(Received 22 September 2009; accepted 10 November 2009; online 18 November 2009)

In the structure of the title compound, [Mo(C11H13NO3)O2(CH3OH)], the MoVI ion is octahedrally coordinated by two oxide O atoms, the N atom and two deprotonated OH groups of the tridentate Schiff base ligand 2-meth­oxy-6-[(2-oxidoprop­yl)imino­meth­yl]phenolate and by a methanol O atom. In the crystal structure, two complexes are linked via O—H⋯O hydrogen bonds, yielding a centrosymmetric arrangement involving the methanol hydr­oxy group and one of the ligand O atoms coordinated to the MoVI ion.

Related literature

For molybdenum (VI) Schiff base complexes in bioinorganic chemistry, see: Holm et al. (1996[Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]) and as oxidation catalysts, see: Arnaiz et al. (2000[Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141-2147.]); Sheikhshoaie et al. (2009[Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733-738.]). For similar structures, see: Abbasi et al. (2008[Abbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036.]); Monadi et al. (2009[Monadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124-m1125.]); Syamal & Maurya (1989[Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183-238.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C11H13NO3)O2(CH4O)]

  • Mr = 367.21

  • Monoclinic, P 21 /c

  • a = 6.7551 (5) Å

  • b = 15.8357 (14) Å

  • c = 13.1198 (10) Å

  • β = 98.287 (9)°

  • V = 1388.79 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 173 K

  • 0.38 × 0.38 × 0.34 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.625, Tmax = 0.716

  • 10555 measured reflections

  • 2666 independent reflections

  • 2601 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.16

  • 2666 reflections

  • 187 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯O1i 0.83 (3) 1.81 (3) 2.639 (2) 176 (2)
Symmetry code: (i) -x, -y, -z.

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL in IPDS-I; data reduction: INTEGRATE in IPDS-I; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Various molybdenum(VI) Schiff base complexes have been studied due to their importance in the domains of bioinorganic chemistry (Holm et al., (1996), analytical chemistry, oxidation catalyst (Arnaiz et al., 2000; Sheikhshoaie et al., 2009) and structural chemistry (Abbasi et al., 2008; Monadi et al., 2009; Syamal & Maurya, 1989). In continuation of our interest in this line of research we have prepared the title compound, synthesized by the reaction of MoO2(acac)2 and the Schiff base ligand 2-[(2-hydroxy-propylimino)-methyl]-phenol in methanol.

The molecular structure of the title compound is illustrated in Fig. 1 and geometrical parameters are available in the supplementary material as well as in the deposited CIF. The molybdenum atom, Mo1, has a distorted octahedral coordination, being coordinated by the N and two O-atoms of the tridentate Schiff base ligand (N1, O1 and O2), two oxido O-atoms (O4 and O5), and by the O-atom (O6) of the coordinating methanol molecule. The Mo—O and Mo—N bond distances are similar to those reported for the molybdenum (VI) Schiff base complex, {1,1'-[(2,2-Dimethylpropane-1,3-diyl)bis(nitrilomethylidyne)] di-2-naphtholato}dioxidomolybdenum(VI) dichloromethane 1.75-solvate, (Monadi et al., 2009).

In the crystal, complexes are linked via hydrogen bonds, O6—H6O···O1i [symmetry operation (i) = -x, -y, -z], involving the methanol hydroxy group and a ligand O-atom coordinating to the second Mo atom so forming centrosymmetric dimers (Table 1 and Fig. 2).

Related literature top

For molybdenum (VI) Schiff base complexes in bioinorganic chemistry, see: Holm et al. (1996) and as oxidation catalysts, see: Arnaiz et al. (2000); Sheikhshoaie et al. (2009). For similar structures, see: Abbasi et al. (2008); Monadi et al. (2009); Syamal & Maurya (1989).

Experimental top

The title compound was prepared by adding MoO2(acac)2 (0.327 g) to a dry methanolic solution (30 ml) of 2-[(2-hydroxy-propylimino)-methyl]-phenol (0.209 g); a 1:1 equimolar ratio. The mixture was then refluxed for 5 h. On cooling a yellow crystalline powder formed, which were filtered off. Crystals of the title complex, suitable for X-ray analysis, were obtained as yellow blocks by slow evaporation at room temperature of a solution in methanol.

Refinement top

The OH H-atom was located in a difference electron-density map and refined with a distance restraint of 0.84 (2) Å and Uiso(H) = 1.5Ueq(parent O-atom). The remaining H atoms could all be located from difference electron-density maps but were included in calculated positions and treated as riding atoms: C—H = 0.95 - 1.00 Å, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for CH and CH2 H-atoms, and 1.5 for CH3 H-atoms.

Computing details top

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000); cell refinement: CELL in IPDS-I (Stoe & Cie, 2000); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure structure of the title compound, showing the numbering scheme and the thermal ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the formation of the O-H···O hydrogen bonded dimers [hydrogen bonds are shown as pale blue lines; H-atoms not involved in hydrogen bonding have been removed for clarity; symmetry operation (i) = -x, -y, -z].
Methanol{2-methoxy-6-[(2- oxidopropyl)iminomethyl]phenolato}dioxidomolybdenum(VI) top
Crystal data top
[Mo(C11H13NO3)O2(CH4O)]F(000) = 744
Mr = 367.21Dx = 1.756 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 6.7551 (5) Åθ = 2.0–26.1°
b = 15.8357 (14) ŵ = 0.97 mm1
c = 13.1198 (10) ÅT = 173 K
β = 98.287 (9)°Block, yellow
V = 1388.79 (19) Å30.38 × 0.38 × 0.34 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
2666 independent reflections
Radiation source: fine-focus sealed tube2601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ rotation scansθmax = 25.9°, θmin = 2.6°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 78
Tmin = 0.625, Tmax = 0.716k = 1919
10555 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0288P)2 + 1.2212P]
where P = (Fo2 + 2Fc2)/3
2666 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.60 e Å3
Crystal data top
[Mo(C11H13NO3)O2(CH4O)]V = 1388.79 (19) Å3
Mr = 367.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7551 (5) ŵ = 0.97 mm1
b = 15.8357 (14) ÅT = 173 K
c = 13.1198 (10) Å0.38 × 0.38 × 0.34 mm
β = 98.287 (9)°
Data collection top
Stoe IPDS
diffractometer
2666 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
2601 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.716Rint = 0.035
10555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0241 restraint
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.41 e Å3
2666 reflectionsΔρmin = 0.60 e Å3
187 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. The OH H-atom was located in a difference electron-density map and refined with a distance constraint of 0.84 (2) Å and Uiso(H) = 1.5Ueq(parent O-atom). The remainder of the H-atoms could all be located from difference electron-density maps but were included in calculated positions and treated as riding atoms: C—H = 0.95 - 1.00 Å, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for CH and CH2 H-atoms, and 1.5 for methyl H-atoms. Using the Stoe IPDS1, one-circle image plate diffraction system, it is often only possible to access 94% maximum of the Ewald sphere depending on the crystal system and the position of the crystal. Here however, 98% of the data were accessible out to 25° in θ.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.03631 (2)0.11249 (1)0.15344 (1)0.0156 (1)
O10.0326 (2)0.12028 (9)0.00507 (12)0.0197 (4)
O20.1700 (2)0.08957 (10)0.29193 (11)0.0210 (4)
O30.1839 (2)0.06916 (11)0.48988 (12)0.0289 (5)
O40.0341 (2)0.21363 (10)0.17290 (12)0.0236 (4)
O50.1751 (2)0.05346 (10)0.15022 (12)0.0228 (4)
O60.1883 (2)0.01628 (10)0.12101 (12)0.0238 (5)
N10.3526 (3)0.14577 (12)0.13382 (14)0.0202 (5)
C10.1774 (3)0.17293 (15)0.03365 (18)0.0261 (6)
C20.3783 (3)0.14935 (16)0.02534 (17)0.0270 (7)
C30.5000 (3)0.16301 (13)0.20319 (17)0.0203 (6)
C40.4983 (3)0.15205 (13)0.31189 (17)0.0200 (6)
C50.6718 (3)0.17449 (15)0.37898 (19)0.0263 (7)
C60.6822 (3)0.16196 (17)0.48262 (19)0.0319 (7)
C70.5213 (4)0.12683 (16)0.52236 (19)0.0294 (7)
C80.3482 (3)0.10346 (14)0.45824 (18)0.0223 (6)
C90.3363 (3)0.11557 (12)0.35135 (17)0.0189 (6)
C100.1682 (4)0.16163 (15)0.14788 (18)0.0272 (7)
C110.1874 (4)0.05673 (19)0.59784 (18)0.0359 (8)
C120.3293 (4)0.06281 (18)0.1874 (2)0.0387 (8)
H10.148300.233300.019000.0310*
H2A0.422200.093800.002100.0320*
H2B0.480100.192200.014600.0320*
H30.618500.184500.181500.0240*
H50.782400.198500.352100.0320*
H60.799800.177300.527600.0380*
H6O0.117 (4)0.0505 (16)0.084 (2)0.0360*
H70.529700.118600.594600.0350*
H10A0.038000.181100.182700.0410*
H10B0.185500.101800.163400.0410*
H10C0.274900.194700.172100.0410*
H11A0.204600.111300.633300.0540*
H11B0.298900.019400.624000.0540*
H11C0.061200.031000.610400.0540*
H12A0.276900.073900.252000.0580*
H12B0.453900.030500.201900.0580*
H12C0.355600.116500.154800.0580*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0105 (1)0.0213 (1)0.0142 (1)0.0008 (1)0.0009 (1)0.0025 (1)
O10.0183 (7)0.0248 (8)0.0153 (7)0.0021 (6)0.0003 (6)0.0011 (6)
O20.0145 (7)0.0326 (8)0.0149 (7)0.0038 (6)0.0017 (6)0.0012 (6)
O30.0265 (8)0.0427 (10)0.0162 (8)0.0051 (7)0.0015 (6)0.0021 (7)
O40.0205 (7)0.0258 (8)0.0236 (8)0.0017 (6)0.0005 (6)0.0059 (6)
O50.0163 (7)0.0257 (8)0.0254 (8)0.0022 (6)0.0007 (6)0.0022 (6)
O60.0233 (8)0.0236 (8)0.0215 (8)0.0028 (6)0.0067 (6)0.0039 (6)
N10.0142 (8)0.0271 (10)0.0193 (9)0.0012 (7)0.0022 (7)0.0005 (7)
C10.0287 (11)0.0255 (11)0.0239 (11)0.0032 (9)0.0031 (9)0.0022 (9)
C20.0212 (10)0.0398 (13)0.0206 (11)0.0048 (10)0.0056 (9)0.0007 (10)
C30.0120 (9)0.0218 (10)0.0271 (11)0.0007 (8)0.0027 (8)0.0034 (9)
C40.0142 (9)0.0210 (10)0.0237 (11)0.0027 (8)0.0011 (8)0.0055 (8)
C50.0146 (10)0.0322 (12)0.0305 (12)0.0005 (9)0.0025 (9)0.0084 (10)
C60.0202 (10)0.0413 (14)0.0300 (13)0.0010 (10)0.0103 (9)0.0085 (11)
C70.0282 (12)0.0373 (13)0.0193 (11)0.0023 (10)0.0076 (10)0.0032 (10)
C80.0212 (11)0.0253 (11)0.0190 (11)0.0021 (8)0.0020 (9)0.0024 (8)
C90.0152 (10)0.0201 (10)0.0196 (11)0.0035 (7)0.0039 (8)0.0051 (8)
C100.0303 (12)0.0283 (11)0.0228 (12)0.0026 (9)0.0036 (9)0.0054 (9)
C110.0410 (14)0.0494 (16)0.0166 (11)0.0071 (12)0.0017 (10)0.0023 (11)
C120.0356 (13)0.0363 (14)0.0382 (15)0.0152 (11)0.0147 (11)0.0059 (11)
Geometric parameters (Å, º) top
Mo1—O11.9471 (16)C6—C71.388 (3)
Mo1—O21.9431 (14)C7—C81.389 (3)
Mo1—O41.7005 (16)C8—C91.406 (3)
Mo1—O51.7022 (15)C1—H11.0000
Mo1—O62.3493 (16)C2—H2A0.9900
Mo1—N12.251 (2)C2—H2B0.9900
O1—C11.433 (3)C3—H30.9500
O2—C91.337 (3)C5—H50.9500
O3—C81.354 (3)C6—H60.9500
O3—C111.427 (3)C7—H70.9500
O6—C121.403 (3)C10—H10A0.9800
O6—H6O0.83 (3)C10—H10B0.9800
N1—C21.460 (3)C10—H10C0.9800
N1—C31.278 (3)C11—H11A0.9800
C1—C21.509 (3)C11—H11B0.9800
C1—C101.502 (3)C11—H11C0.9800
C3—C41.438 (3)C12—H12A0.9800
C4—C91.401 (3)C12—H12B0.9800
C4—C51.406 (3)C12—H12C0.9800
C5—C61.366 (3)
O1—Mo1—O2152.13 (6)C4—C9—C8119.30 (19)
O1—Mo1—O497.29 (7)O2—C9—C4123.2 (2)
O1—Mo1—O596.90 (7)O2—C9—C8117.52 (18)
O1—Mo1—O679.45 (6)O1—C1—H1109.00
O1—Mo1—N175.32 (6)C2—C1—H1109.00
O2—Mo1—O497.93 (7)C10—C1—H1109.00
O2—Mo1—O5101.30 (7)N1—C2—H2A110.00
O2—Mo1—O681.43 (6)N1—C2—H2B110.00
O2—Mo1—N180.20 (6)C1—C2—H2A110.00
O4—Mo1—O5105.61 (7)C1—C2—H2B110.00
O4—Mo1—O6169.64 (6)H2A—C2—H2B109.00
O4—Mo1—N195.01 (7)N1—C3—H3118.00
O5—Mo1—O684.60 (6)C4—C3—H3118.00
O5—Mo1—N1158.82 (7)C4—C5—H5120.00
O6—Mo1—N174.68 (6)C6—C5—H5120.00
Mo1—O1—C1118.70 (13)C5—C6—H6120.00
Mo1—O2—C9136.56 (13)C7—C6—H6120.00
C8—O3—C11117.57 (18)C6—C7—H7119.00
Mo1—O6—C12128.21 (14)C8—C7—H7119.00
C12—O6—H6O107.7 (18)C1—C10—H10A109.00
Mo1—O6—H6O116.1 (19)C1—C10—H10B109.00
Mo1—N1—C3128.57 (15)C1—C10—H10C109.00
Mo1—N1—C2111.65 (13)H10A—C10—H10B109.00
C2—N1—C3119.75 (19)H10A—C10—H10C109.00
O1—C1—C10110.63 (19)H10B—C10—H10C110.00
O1—C1—C2106.47 (18)O3—C11—H11A109.00
C2—C1—C10112.78 (19)O3—C11—H11B109.00
N1—C2—C1106.57 (17)O3—C11—H11C110.00
N1—C3—C4124.3 (2)H11A—C11—H11B109.00
C3—C4—C9122.31 (19)H11A—C11—H11C109.00
C3—C4—C5117.72 (19)H11B—C11—H11C109.00
C5—C4—C9119.9 (2)O6—C12—H12A109.00
C4—C5—C6120.3 (2)O6—C12—H12B109.00
C5—C6—C7120.1 (2)O6—C12—H12C110.00
C6—C7—C8121.1 (2)H12A—C12—H12B109.00
O3—C8—C9115.41 (19)H12A—C12—H12C109.00
C7—C8—C9119.3 (2)H12B—C12—H12C109.00
O3—C8—C7125.3 (2)
O2—Mo1—O1—C155.3 (2)Mo1—O2—C9—C421.0 (3)
O4—Mo1—O1—C167.30 (14)Mo1—O2—C9—C8160.43 (15)
O5—Mo1—O1—C1174.09 (14)C11—O3—C8—C70.7 (3)
O6—Mo1—O1—C1102.75 (14)C11—O3—C8—C9179.1 (2)
N1—Mo1—O1—C125.99 (14)Mo1—N1—C2—C128.0 (2)
O1—Mo1—O2—C953.8 (3)C3—N1—C2—C1150.1 (2)
O4—Mo1—O2—C968.64 (19)Mo1—N1—C3—C49.8 (3)
O5—Mo1—O2—C9176.39 (19)C2—N1—C3—C4172.5 (2)
O6—Mo1—O2—C9100.92 (19)O1—C1—C2—N146.5 (2)
N1—Mo1—O2—C925.11 (19)C10—C1—C2—N1168.03 (19)
O1—Mo1—O6—C12151.18 (18)N1—C3—C4—C5179.5 (2)
O2—Mo1—O6—C128.45 (18)N1—C3—C4—C94.4 (3)
O5—Mo1—O6—C12110.76 (18)C3—C4—C5—C6177.1 (2)
N1—Mo1—O6—C1273.67 (18)C9—C4—C5—C60.9 (3)
O1—Mo1—N1—C23.26 (14)C3—C4—C9—O21.2 (3)
O1—Mo1—N1—C3174.7 (2)C3—C4—C9—C8177.28 (19)
O2—Mo1—N1—C2163.30 (16)C5—C4—C9—O2177.24 (19)
O2—Mo1—N1—C318.79 (19)C5—C4—C9—C81.3 (3)
O4—Mo1—N1—C299.50 (15)C4—C5—C6—C70.1 (4)
O4—Mo1—N1—C378.4 (2)C5—C6—C7—C80.3 (4)
O5—Mo1—N1—C267.3 (3)C6—C7—C8—O3179.7 (2)
O5—Mo1—N1—C3114.8 (2)C6—C7—C8—C90.1 (4)
O6—Mo1—N1—C279.59 (15)O3—C8—C9—O22.5 (3)
O6—Mo1—N1—C3102.5 (2)O3—C8—C9—C4178.94 (19)
Mo1—O1—C1—C249.6 (2)C7—C8—C9—O2177.7 (2)
Mo1—O1—C1—C10172.42 (14)C7—C8—C9—C40.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O1i0.83 (3)1.81 (3)2.639 (2)176 (2)
C3—H3···O4ii0.952.413.327 (2)162
C3—H3···O5ii0.952.572.958 (3)105
C10—H10A···O4iii0.982.523.221 (3)128
C10—H10B···O5i0.982.473.407 (3)161
C11—H11C···O3iv0.982.523.280 (3)134
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mo(C11H13NO3)O2(CH4O)]
Mr367.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.7551 (5), 15.8357 (14), 13.1198 (10)
β (°) 98.287 (9)
V3)1388.79 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.38 × 0.38 × 0.34
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.625, 0.716
No. of measured, independent and
observed [I > 2σ(I)] reflections
10555, 2666, 2601
Rint0.035
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.16
No. of reflections2666
No. of parameters187
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.60

Computer programs: EXPOSE in IPDS-I (Stoe & Cie, 2000), CELL in IPDS-I (Stoe & Cie, 2000), INTEGRATE in IPDS-I (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O1i0.83 (3)1.81 (3)2.639 (2)176 (2)
Symmetry code: (i) x, y, z.
 

References

First citationAbbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141–2147.  Web of Science CSD CrossRef CAS Google Scholar
First citationHolm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMonadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733–738.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSyamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183–238.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds