organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3088-o3089

(4-Methyl­phen­yl)[3-(5-nitro-2-fur­yl)-1-phenyl-1H-pyrazol-4-yl]methanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 4 November 2009; accepted 9 November 2009; online 14 November 2009)

In the title pyrazole compound, C21H15N3O4, an intra­molecular C—H⋯O hydrogen bond generates an S(7) ring motif. The essentially planar furan and pyrazole rings [maximum atomic deviations of 0.011 (2) and 0.006 (2) Å, respectively] make a dihedral angle of 9.21 (11)°. The nitro group is approximately coplanar with the attached furan ring, as indicated by the dihedral angle of 4.5 (2)°. In the crystal structure, inter­molecular C—H⋯O inter­actions form bifurcated hydrogen bonds, generating R12(7) ring motifs. These hydrogen bonds link the mol­ecules into infinite chains along the a axis. The crystal structure is further stabilized by weak inter­molecular ππ inter­actions [centroid–centroid distance = 3.4118 (10) Å].

Related literature

For general background to and applications of the title compound, see: Hegde et al. (2006[Hegde, J. C., Rai, G., Puranic, V. G. & Kalluraya, B. (2006). Synth. Commun. 36, 1285-1290.]); Kalluraya et al. (1994[Kalluraya, B., D'Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017-1022.]); Rai & Kalluraya (2006[Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375-378.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15N3O4

  • Mr = 373.36

  • Monoclinic, P 21 /c

  • a = 11.3859 (2) Å

  • b = 7.5746 (2) Å

  • c = 21.0008 (4) Å

  • β = 107.202 (1)°

  • V = 1730.17 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.19 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.990

  • 22336 measured reflections

  • 5085 independent reflections

  • 2678 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.135

  • S = 1.02

  • 5085 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2 0.93 2.24 2.902 (2) 128
C14—H14A⋯O3i 0.93 2.55 3.467 (2) 168
C20—H20A⋯O3i 0.93 2.46 3.373 (3) 166
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyrazole nucleus constitutes an interesting class of organic compound with diverse chemical applications. They possess anti-pyretic, anti-tumor, tranquilizing and herbicidal activities. Sydnones are easily accessible aromatic compounds and versatile synthetic intermediates with a masked azomethine imine unit. The 1,3-dipolar cycloaddition reaction with various dipolarophiles offers a convenient synthetic route for the preparation of pyrazole derivatives and has been studied extensively (Rai & Kalluraya, 2006; Rai et al., 2008).

The incorporation of 5-nitrofuran moiety into various heterocyclic systems has found to increase their biological activities. We have reported a few heterocyclic systems carrying 5-nitrofuran moiety as potent anti-microbial agents (Hegde et al., 2006). In continuation of our studies on 1,3-dipolar cycloaddition reactions of sydnones with dipolarophiles carrying nitrofuran moiety (Kalluraya et al., 1994), we herein report the synthesis of this new pyrazole.

In the title pyrazole compound, an intramolecular C11—H11A···O2 hydrogen bond (Table 1) generates a seven-membered ring, producing an S(7) ring motif (Fig. 1, Bernstein et al., 1995). The furan (C10-C13/O1) and pyrazole (C8/C9/N2/N1/C14) rings are essentially planar, with maximum deviations of 0.011 (2) and 0.006 (2) Å, respectively, for atoms C10 and N2. These two rings are slightly twisted to one another, making a dihedral angle of 9.21 (11)° between them. The nitro group is approximately coplanar with the attached furan ring, as shown by the dihedral angle formed between the mean plane through N3/O3/O4 and the C10-C13/O1 furan ring of 4.5 (2)°. The bond lengths (Allen et al., 1987) and angles observed are within normal ranges.

In the crystal structure (Fig. 2), intermolecular C14—H14A···O3 and C20—H20A···O3 interactions (Table 1) form bifurcated acceptor hydrogen bonds which generate R12(7) ring motifs. These hydrogen bonds link the molecules into one-dimensional infinite chains along the a axis. The crystal structure is further stabillized by weak intermolecular ππ interactions [Cg1···Cg1 = 3.4118 (10) Å; Cg1 is the centroid of the C8/C9/N2/N1/C14 pyrazole ring].

Related literature top

For general background to and applications of the title compound, see: Hegde et al. (2006); Kalluraya et al. (1994); Rai & Kalluraya (2006); Rai et al. (2008). For hydrogen-bond motifs, see : Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

3-Phenyl sydnone (0.01 mol) and 1-(p-methylphenyl)-3-(5-nitro-2-furyl)-2-propyn-1-one (0.01 mol) were dissolved in 10 ml dry xylene and refluxed for 4 h. After completion of the reaction, the solvent was removed by distillation under reduced pressure. The crude product obtained was purified by recrystallization from ethanol and DMF mixture. The solid obtained was collected by filtration, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement top

All the hydrogen atoms were placed in their calculated positions, with C—H = 0.93 – 0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis, showing one dimensional infinite chains along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
(4-Methylphenyl)[3-(5-nitro-2-furyl)-1-phenyl-1H-pyrazol-4-yl]methanone top
Crystal data top
C21H15N3O4F(000) = 776
Mr = 373.36Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2474 reflections
a = 11.3859 (2) Åθ = 3.3–30.1°
b = 7.5746 (2) ŵ = 0.10 mm1
c = 21.0008 (4) ÅT = 100 K
β = 107.202 (1)°Block, brown
V = 1730.17 (6) Å30.19 × 0.18 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5085 independent reflections
Radiation source: fine-focus sealed tube2678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1516
Tmin = 0.981, Tmax = 0.990k = 109
22336 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.0761P]
where P = (Fo2 + 2Fc2)/3
5085 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H15N3O4V = 1730.17 (6) Å3
Mr = 373.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3859 (2) ŵ = 0.10 mm1
b = 7.5746 (2) ÅT = 100 K
c = 21.0008 (4) Å0.19 × 0.18 × 0.10 mm
β = 107.202 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5085 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2678 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.990Rint = 0.085
22336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
5085 reflectionsΔρmin = 0.28 e Å3
254 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26961 (11)0.68826 (17)0.02101 (6)0.0275 (3)
O20.05600 (11)0.98467 (18)0.11675 (6)0.0286 (3)
O30.56846 (12)0.7483 (2)0.01746 (8)0.0464 (4)
O40.49541 (13)0.5852 (2)0.08230 (8)0.0473 (4)
N10.04825 (13)0.6498 (2)0.06270 (7)0.0219 (4)
N20.06690 (14)0.6518 (2)0.05573 (8)0.0245 (4)
N30.48241 (15)0.6877 (2)0.03543 (9)0.0340 (4)
C10.33869 (18)0.7702 (3)0.12408 (9)0.0284 (5)
H1A0.30850.66240.10490.034*
C20.46370 (18)0.7905 (3)0.15579 (10)0.0320 (5)
H2A0.51600.69460.15850.038*
C30.51237 (18)0.9510 (3)0.18361 (10)0.0310 (5)
C40.43195 (18)1.0917 (3)0.17911 (9)0.0294 (5)
H4A0.46281.20090.19650.035*
C50.30696 (18)1.0725 (3)0.14930 (9)0.0269 (5)
H5A0.25461.16750.14800.032*
C60.25869 (17)0.9108 (3)0.12104 (9)0.0248 (4)
C70.12233 (17)0.8988 (2)0.09159 (9)0.0222 (4)
C80.06949 (16)0.7914 (2)0.03174 (9)0.0222 (4)
C90.05508 (16)0.7393 (2)0.00105 (9)0.0220 (4)
C100.16698 (17)0.7701 (2)0.01993 (9)0.0236 (4)
C110.19765 (17)0.8688 (3)0.06673 (10)0.0281 (5)
H11A0.14430.93380.10070.034*
C120.32650 (18)0.8533 (3)0.05368 (10)0.0327 (5)
H12A0.37520.90680.07670.039*
C130.36327 (17)0.7451 (3)0.00098 (10)0.0274 (5)
C140.13067 (17)0.7302 (2)0.01160 (9)0.0220 (4)
H14A0.21430.74250.00640.026*
C150.06792 (17)0.5688 (2)0.12035 (9)0.0232 (4)
C160.02628 (18)0.4746 (3)0.16354 (9)0.0273 (5)
H16A0.10250.46640.15590.033*
C170.00643 (19)0.3924 (3)0.21841 (10)0.0331 (5)
H17A0.06930.32750.24730.040*
C180.10610 (19)0.4062 (3)0.23042 (10)0.0345 (5)
H18A0.11900.35160.26740.041*
C190.19937 (19)0.5017 (3)0.18716 (10)0.0328 (5)
H19A0.27510.51110.19530.039*
C200.18140 (18)0.5839 (3)0.13170 (10)0.0278 (5)
H20A0.24450.64810.10260.033*
C210.64761 (18)0.9736 (3)0.21836 (11)0.0425 (6)
H21A0.67681.07840.20220.064*
H21B0.69160.87290.20950.064*
H21C0.66070.98380.26550.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0179 (7)0.0278 (8)0.0350 (8)0.0026 (6)0.0053 (6)0.0027 (6)
O20.0245 (8)0.0303 (8)0.0307 (7)0.0007 (6)0.0078 (6)0.0007 (6)
O30.0191 (8)0.0648 (12)0.0557 (10)0.0010 (8)0.0118 (8)0.0040 (9)
O40.0270 (9)0.0471 (10)0.0633 (11)0.0079 (8)0.0062 (8)0.0162 (9)
N10.0163 (8)0.0217 (9)0.0264 (8)0.0011 (7)0.0045 (7)0.0028 (7)
N20.0185 (9)0.0234 (9)0.0315 (9)0.0000 (7)0.0073 (7)0.0040 (7)
N30.0214 (10)0.0361 (11)0.0429 (11)0.0028 (8)0.0069 (9)0.0053 (9)
C10.0259 (11)0.0278 (12)0.0283 (11)0.0008 (10)0.0031 (9)0.0010 (9)
C20.0228 (11)0.0345 (13)0.0354 (12)0.0051 (10)0.0035 (10)0.0009 (10)
C30.0213 (11)0.0412 (14)0.0279 (11)0.0021 (10)0.0036 (9)0.0005 (10)
C40.0262 (11)0.0302 (12)0.0292 (11)0.0049 (10)0.0040 (9)0.0017 (9)
C50.0244 (11)0.0279 (12)0.0279 (10)0.0009 (9)0.0070 (9)0.0018 (9)
C60.0205 (10)0.0289 (11)0.0242 (10)0.0020 (9)0.0052 (9)0.0042 (9)
C70.0202 (10)0.0216 (11)0.0237 (10)0.0023 (8)0.0046 (8)0.0055 (8)
C80.0180 (10)0.0207 (10)0.0259 (10)0.0008 (8)0.0033 (8)0.0051 (8)
C90.0192 (10)0.0184 (10)0.0260 (10)0.0010 (8)0.0031 (8)0.0058 (8)
C100.0187 (10)0.0206 (11)0.0283 (10)0.0031 (8)0.0021 (9)0.0059 (8)
C110.0205 (11)0.0307 (12)0.0321 (11)0.0018 (9)0.0062 (9)0.0013 (9)
C120.0242 (11)0.0372 (13)0.0386 (12)0.0002 (10)0.0124 (10)0.0007 (10)
C130.0149 (10)0.0299 (12)0.0363 (11)0.0010 (9)0.0059 (9)0.0066 (10)
C140.0164 (10)0.0212 (11)0.0251 (10)0.0016 (8)0.0013 (8)0.0052 (8)
C150.0229 (10)0.0205 (10)0.0240 (10)0.0020 (9)0.0034 (9)0.0060 (8)
C160.0209 (11)0.0295 (12)0.0281 (10)0.0006 (9)0.0020 (9)0.0042 (9)
C170.0316 (13)0.0349 (13)0.0267 (11)0.0021 (10)0.0006 (10)0.0000 (10)
C180.0383 (13)0.0374 (13)0.0269 (11)0.0072 (11)0.0083 (10)0.0007 (10)
C190.0296 (12)0.0347 (13)0.0365 (12)0.0051 (10)0.0136 (10)0.0067 (10)
C200.0217 (11)0.0275 (11)0.0319 (11)0.0009 (9)0.0042 (9)0.0030 (9)
C210.0238 (12)0.0503 (16)0.0482 (14)0.0021 (11)0.0024 (11)0.0084 (12)
Geometric parameters (Å, º) top
O1—C131.352 (2)C8—C141.380 (2)
O1—C101.377 (2)C8—C91.429 (2)
O2—C71.229 (2)C9—C101.461 (2)
O3—N31.2377 (19)C10—C111.360 (3)
O4—N31.228 (2)C11—C121.415 (3)
N1—C141.345 (2)C11—H11A0.9300
N1—N21.3617 (19)C12—C131.341 (3)
N1—C151.433 (2)C12—H12A0.9300
N2—C91.336 (2)C14—H14A0.9300
N3—C131.414 (2)C15—C161.381 (3)
C1—C21.390 (3)C15—C201.386 (2)
C1—C61.391 (3)C16—C171.386 (3)
C1—H1A0.9300C16—H16A0.9300
C2—C31.391 (3)C17—C181.381 (3)
C2—H2A0.9300C17—H17A0.9300
C3—C41.390 (3)C18—C191.380 (3)
C3—C211.506 (3)C18—H18A0.9300
C4—C51.383 (3)C19—C201.388 (3)
C4—H4A0.9300C19—H19A0.9300
C5—C61.400 (3)C20—H20A0.9300
C5—H5A0.9300C21—H21A0.9600
C6—C71.494 (3)C21—H21B0.9600
C7—C81.468 (3)C21—H21C0.9600
C13—O1—C10104.64 (15)O1—C10—C9113.95 (16)
C14—N1—N2112.07 (14)C10—C11—C12106.71 (18)
C14—N1—C15128.45 (15)C10—C11—H11A126.6
N2—N1—C15119.47 (15)C12—C11—H11A126.6
C9—N2—N1104.81 (15)C13—C12—C11105.26 (17)
O4—N3—O3124.09 (18)C13—C12—H12A127.4
O4—N3—C13119.78 (17)C11—C12—H12A127.4
O3—N3—C13116.12 (18)C12—C13—O1113.05 (17)
C2—C1—C6120.08 (19)C12—C13—N3130.51 (18)
C2—C1—H1A120.0O1—C13—N3116.41 (18)
C6—C1—H1A120.0N1—C14—C8108.03 (16)
C1—C2—C3121.47 (19)N1—C14—H14A126.0
C1—C2—H2A119.3C8—C14—H14A126.0
C3—C2—H2A119.3C16—C15—C20120.81 (18)
C4—C3—C2117.98 (19)C16—C15—N1119.41 (16)
C4—C3—C21120.30 (19)C20—C15—N1119.78 (17)
C2—C3—C21121.72 (19)C15—C16—C17119.49 (17)
C5—C4—C3121.27 (19)C15—C16—H16A120.3
C5—C4—H4A119.4C17—C16—H16A120.3
C3—C4—H4A119.4C18—C17—C16120.4 (2)
C4—C5—C6120.43 (18)C18—C17—H17A119.8
C4—C5—H5A119.8C16—C17—H17A119.8
C6—C5—H5A119.8C19—C18—C17119.62 (19)
C1—C6—C5118.74 (18)C19—C18—H18A120.2
C1—C6—C7123.94 (18)C17—C18—H18A120.2
C5—C6—C7117.27 (17)C18—C19—C20120.77 (18)
O2—C7—C8120.88 (17)C18—C19—H19A119.6
O2—C7—C6119.03 (17)C20—C19—H19A119.6
C8—C7—C6120.04 (16)C15—C20—C19118.91 (19)
C14—C8—C9103.72 (16)C15—C20—H20A120.5
C14—C8—C7126.29 (17)C19—C20—H20A120.5
C9—C8—C7129.78 (16)C3—C21—H21A109.5
N2—C9—C8111.36 (15)C3—C21—H21B109.5
N2—C9—C10117.12 (17)H21A—C21—H21B109.5
C8—C9—C10131.49 (18)C3—C21—H21C109.5
C11—C10—O1110.30 (15)H21A—C21—H21C109.5
C11—C10—C9135.64 (18)H21B—C21—H21C109.5
C14—N1—N2—C91.1 (2)N2—C9—C10—O16.0 (2)
C15—N1—N2—C9178.35 (15)C8—C9—C10—O1176.27 (17)
C6—C1—C2—C31.6 (3)O1—C10—C11—C121.9 (2)
C1—C2—C3—C40.3 (3)C9—C10—C11—C12174.0 (2)
C1—C2—C3—C21179.66 (18)C10—C11—C12—C130.9 (2)
C2—C3—C4—C51.4 (3)C11—C12—C13—O10.4 (2)
C21—C3—C4—C5177.92 (17)C11—C12—C13—N3177.31 (19)
C3—C4—C5—C61.9 (3)C10—O1—C13—C121.5 (2)
C2—C1—C6—C51.2 (3)C10—O1—C13—N3176.56 (16)
C2—C1—C6—C7176.31 (17)O4—N3—C13—C12179.2 (2)
C4—C5—C6—C10.5 (3)O3—N3—C13—C121.7 (3)
C4—C5—C6—C7178.19 (16)O4—N3—C13—O13.2 (3)
C1—C6—C7—O2144.79 (18)O3—N3—C13—O1175.94 (16)
C5—C6—C7—O232.7 (2)N2—N1—C14—C80.6 (2)
C1—C6—C7—C837.8 (3)C15—N1—C14—C8178.73 (16)
C5—C6—C7—C8144.68 (17)C9—C8—C14—N10.1 (2)
O2—C7—C8—C14160.61 (18)C7—C8—C14—N1175.08 (17)
C6—C7—C8—C1416.7 (3)C14—N1—C15—C16172.41 (18)
O2—C7—C8—C913.1 (3)N2—N1—C15—C168.3 (3)
C6—C7—C8—C9169.56 (18)C14—N1—C15—C206.8 (3)
N1—N2—C9—C81.1 (2)N2—N1—C15—C20172.55 (16)
N1—N2—C9—C10177.03 (15)C20—C15—C16—C170.8 (3)
C14—C8—C9—N20.8 (2)N1—C15—C16—C17178.34 (17)
C7—C8—C9—N2175.53 (17)C15—C16—C17—C180.9 (3)
C14—C8—C9—C10177.03 (19)C16—C17—C18—C190.4 (3)
C7—C8—C9—C102.3 (3)C17—C18—C19—C200.0 (3)
C13—O1—C10—C112.0 (2)C16—C15—C20—C190.4 (3)
C13—O1—C10—C9174.79 (15)N1—C15—C20—C19178.79 (17)
N2—C9—C10—C11169.7 (2)C18—C19—C20—C150.1 (3)
C8—C9—C10—C118.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.932.242.902 (2)128
C14—H14A···O3i0.932.553.467 (2)168
C20—H20A···O3i0.932.463.373 (3)166
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H15N3O4
Mr373.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.3859 (2), 7.5746 (2), 21.0008 (4)
β (°) 107.202 (1)
V3)1730.17 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
22336, 5085, 2678
Rint0.085
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.135, 1.02
No. of reflections5085
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.93002.24002.902 (2)128
C14—H14A···O3i0.93002.55003.467 (2)168
C20—H20A···O3i0.93002.46003.373 (3)166
Symmetry code: (i) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHegde, J. C., Rai, G., Puranic, V. G. & Kalluraya, B. (2006). Synth. Commun. 36, 1285–1290.  Web of Science CrossRef CAS Google Scholar
First citationKalluraya, B., D'Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022.  Google Scholar
First citationRai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3088-o3089
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds