

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*E*,*E*)-2,5-Bis(5-chloro-2-methoxyphenyl)-3,4-diazahexa-2,4-diene

Jian-Guo Chang,^a* Jie Lu^b and Ren-Gao Zhao^a

^aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^bDepartment of Architecture and Mechanical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China Correspondence e-mail: tsucjg@163.com

Received 25 September 2009; accepted 14 November 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.129; data-to-parameter ratio = 14.1.

The title compound, $C_{18}H_{18}Cl_2N_2O_2$, was synthesized by the reaction of 1-(5-chloro-2-methoxyphenyl)ethanone with hydrazine hydrate. The molecule lies on a crystallographic twofold axis passing through the mid-point of the N-N bond with one half-molecule in the asymmetric unit. The dihedral angle between the two aromatic rings is 44.33 (4)°. In the crystal, intermolecular C-H···O interactions link the molecules into columns along the c axis

Related literature

For azine compounds containing both a diimine linkage and N-N bonding, see: Kesslen et al. (1999); Kundu et al. (2005). For related structures, see: Glaser et al. (1995); Hunig et al. (2000).

4469 measured reflections 1566 independent reflections 1417 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.019$

Experimental

Crystal data

C18H18Cl2N2O2 V = 876.8 (4) Å³ $M_r = 365.24$ Z = 2Orthorhombic, P21212 Mo $K\alpha$ radiation a = 7.9030 (19) Å $\mu = 0.38 \text{ mm}^{-1}$ b = 27.862 (7) Å T = 295 Kc = 3.9819 (10) Å $0.22 \times 0.16 \times 0.12 \text{ mm}$

Data collection

Bruker APEXII CCD area detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\min} = 0.921, \ T_{\max} = 0.956$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	$\Delta \rho_{\rm max} = 0.12 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.129$	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$
S = 1.01	Absolute structure: Flack (1983)
1566 reflections	592 Friedel pairs
111 parameters	Flack parameter: 0.08 (12)
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

D-II. A	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9B\cdotsO1^{i}$	0.96	2.68	3.521 (3)	146

Symmetry code: (i) x, y, z - 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was supported by the Postgraduate Foundation of Taishan University (No.Y05-2-09)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2273).

References

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Glaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449-1458.

Hunig, S., Kemmer, M. & Wenner, H. (2000). Chem. Eur. J. 6, 2618-2632.

Kesslen, E. C., Euler, W. B. & Foxman, B. M. (1999). Chem. Mater. 11, 336-340.

Kundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583-m1585.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o3185 [doi:10.1107/S1600536809048351]

(E,E)-2,5-Bis(5-chloro-2-methoxyphenyl)-3,4-diazahexa-2,4-diene

Jian-Guo Chang, Jie Lu and Ren-Gao Zhao

S1. Comment

Recently, a number of azine compounds containing both a diimine linkage and N—N bonding have been investigated in terms of their crystallography and coordination chemistry (Kundu *et al.*, 2005; Kesslen *et al.*, 1999). As an extension of the work on the structural characterization of azine derivatives, the title compound, (I),was synthesized and its crystal structure is reported here.

The molecule lies on a crystallogrpahic 2-fold axis passing through the mid-point of the N-N bond to give 1/2 molecule per asymmetric unit. (Fig. 1). The dihedral angle between the two aromatic rings is 44.33 (4)°. The N atom and the phenyl ring lie on opposite side of the C8=N1 bond to give an (E, E) conformation with respect to the C8=N1 bond (and its symmetry related C8*a*=N1a double bond (Fig. 1.). This configuration agrees with those commonly found in similar compounds (Glaser *et al.*, 1995; Hunig *et al.*, 2000). Intermolecular C—H···O interactions link the molecules into columns along the c axis (Table 1, Fig. 2).

S2. Experimental

An ethanol solution (30 ml) of hydrazine (0.02 mol) and 1-(5-chloro-2-methoxyphenyl)ethanone (0.04 mol) was refluxed and stirred for 6 h; the mixture was cooled and the resulting solid product, (I), was collected by filtration. Colourless crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in acetone.

S3. Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C - H(methyl) = 0.96 Å, C - H(aromatic) = 0.93 Å, and with $U_{iso}(H) = 1.5 U_{eq}(C_{methyl})$ and $1.2 U_{eq}(C_{aromatic})$.

Figure 1

The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of (I) , Dashed lines show intermolecular C—H…O interactions .

(*E,E*)-2,5-Bis(5-chloro-2-methoxyphenyl)-3,4-diazahexa-2,4-diene

Crystal data	
$C_{18}H_{18}Cl_2N_2O_2$	F(000) = 380
$M_r = 365.24$	$D_{\rm x} = 1.383 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2 2ab	Cell parameters from 2313 reflections
a = 7.9030 (19) Å	$\theta = 2.7 - 27.8^{\circ}$
b = 27.862 (7) Å	$\mu = 0.38 \text{ mm}^{-1}$
c = 3.9819 (10) Å	T = 295 K
V = 876.8 (4) Å ³	Block, colourless
Z=2	$0.22 \times 0.16 \times 0.12 \text{ mm}$

Data collection

Bruker APEXII CCD area detector	4469 measured reflections
diffractometer	1566 independent reflections
Radiation source: fine-focus sealed tube	1417 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.019$
phi and ω scans	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.5^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 8$
(<i>SADABS</i> ; Sheldrick, 2003)	$k = -33 \rightarrow 32$
$T_{\min} = 0.921, T_{\max} = 0.956$	$l = -4 \rightarrow 4$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.129$	$w = 1/[\sigma^2(F_o^2) + (0.1019P)^2 + 0.021P]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
1566 reflections	$(\Delta/\sigma)_{max} < 0.001$
111 parameters	$\Delta\rho_{max} = 0.12$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -0.22$ e Å ⁻³
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 592 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.08 (12)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

r				
л	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.35358 (10)	0.29469 (2)	0.1116 (2)	0.0643 (3)	
0.9306 (2)	0.40920 (6)	0.5876 (6)	0.0520 (5)	
0.5044 (3)	0.47464 (6)	0.4965 (5)	0.0367 (5)	
0.6541 (3)	0.40440 (7)	0.3671 (6)	0.0333 (5)	
0.8000 (3)	0.38071 (8)	0.4798 (6)	0.0373 (6)	
0.8050 (4)	0.33068 (10)	0.4871 (7)	0.0487 (7)	
0.9006	0.3150	0.5674	0.058*	
0.6670 (3)	0.30434 (8)	0.3743 (7)	0.0468 (7)	
0.6702	0.2710	0.3770	0.056*	
0.5261 (4)	0.32784 (9)	0.2588 (7)	0.0429 (6)	
0.5175 (3)	0.37744 (8)	0.2532 (6)	0.0381 (6)	
0.4208	0.3927	0.1736	0.046*	
1.0770 (4)	0.38654 (12)	0.7221 (9)	0.0611 (8)	
1.0453	0.3671	0.9111	0.092*	
1.1565	0.4106	0.7929	0.092*	
	x 0.35358 (10) 0.9306 (2) 0.5044 (3) 0.6541 (3) 0.8000 (3) 0.8050 (4) 0.9006 0.6670 (3) 0.6702 0.5261 (4) 0.5175 (3) 0.4208 1.0770 (4) 1.0453 1.1565	x y $0.35358 (10)$ $0.29469 (2)$ $0.9306 (2)$ $0.40920 (6)$ $0.5044 (3)$ $0.47464 (6)$ $0.6541 (3)$ $0.47464 (6)$ $0.6541 (3)$ $0.40440 (7)$ $0.8000 (3)$ $0.38071 (8)$ $0.8050 (4)$ $0.33068 (10)$ 0.9006 0.3150 $0.6670 (3)$ $0.30434 (8)$ 0.6702 0.2710 $0.5261 (4)$ $0.32784 (9)$ $0.5175 (3)$ $0.37744 (8)$ 0.4208 0.3927 $1.0770 (4)$ $0.38654 (12)$ 1.0453 0.3671 1.1565 0.4106	x y z $0.35358(10)$ $0.29469(2)$ $0.1116(2)$ $0.9306(2)$ $0.40920(6)$ $0.5876(6)$ $0.5044(3)$ $0.47464(6)$ $0.4965(5)$ $0.6541(3)$ $0.40440(7)$ $0.3671(6)$ $0.8000(3)$ $0.38071(8)$ $0.4798(6)$ $0.8050(4)$ $0.33068(10)$ $0.4871(7)$ 0.9006 0.3150 0.5674 $0.6670(3)$ $0.30434(8)$ $0.3743(7)$ 0.6702 0.2710 0.3770 $0.5261(4)$ $0.32784(9)$ $0.2588(7)$ $0.5175(3)$ $0.37744(8)$ $0.2532(6)$ 0.4208 0.3927 0.1736 $1.0770(4)$ $0.38654(12)$ $0.7221(9)$ 1.0453 0.3671 0.9111 1.1565 0.4106 0.7929	X y 2 $O_{180} + O_{eq}$ $0.35358 (10)$ $0.29469 (2)$ $0.1116 (2)$ $0.0643 (3)$ $0.9306 (2)$ $0.40920 (6)$ $0.5876 (6)$ $0.0520 (5)$ $0.5044 (3)$ $0.47464 (6)$ $0.4965 (5)$ $0.0367 (5)$ $0.6541 (3)$ $0.40440 (7)$ $0.3671 (6)$ $0.0333 (5)$ $0.8000 (3)$ $0.38071 (8)$ $0.4798 (6)$ $0.0373 (6)$ $0.8050 (4)$ $0.33068 (10)$ $0.4871 (7)$ $0.0487 (7)$ 0.9006 0.3150 0.5674 $0.058*$ $0.6670 (3)$ $0.30434 (8)$ $0.3743 (7)$ $0.0468 (7)$ $0.5261 (4)$ $0.32784 (9)$ $0.2588 (7)$ $0.0429 (6)$ $0.5175 (3)$ $0.37744 (8)$ $0.2532 (6)$ $0.0381 (6)$ 0.4208 0.3927 0.1736 $0.046*$ $1.0770 (4)$ $0.38654 (12)$ $0.7221 (9)$ $0.0611 (8)$ 1.0453 0.3671 0.9111 $0.092*$ 1.1565 0.4106 0.7929 $0.092*$

supporting information

H7C	1.1279	0.3667	0.5532	0.092*	
C8	0.6407 (3)	0.45789 (8)	0.3653 (6)	0.0330 (5)	
C9	0.7746 (3)	0.48801 (9)	0.2056 (7)	0.0413 (6)	
H9A	0.7244	0.5081	0.0369	0.062*	
H9B	0.8580	0.4676	0.1039	0.062*	
H9C	0.8274	0.5077	0.3734	0.062*	
C8 C9 H9A H9B H9C	0.6407 (3) 0.7746 (3) 0.7244 0.8580 0.8274	0.45789 (8) 0.48801 (9) 0.5081 0.4676 0.5077	0.3653 (6) 0.2056 (7) 0.0369 0.1039 0.3734	0.0330 (5) 0.0413 (6) 0.062* 0.062* 0.062*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.0758 (5)	0.0434 (4)	0.0738 (5)	-0.0196 (3)	-0.0095 (5)	-0.0004 (4)
01	0.0404 (9)	0.0499 (10)	0.0656 (13)	0.0104 (8)	-0.0170 (10)	-0.0051 (10)
N1	0.0331 (10)	0.0273 (9)	0.0497 (12)	0.0040 (8)	-0.0013 (9)	0.0009 (9)
C1	0.0368 (12)	0.0316 (12)	0.0315 (11)	0.0055 (9)	0.0014 (11)	0.0012 (9)
C2	0.0404 (13)	0.0386 (12)	0.0329 (12)	0.0102 (10)	-0.0014 (10)	-0.0024 (10)
C3	0.0568 (16)	0.0408 (13)	0.0485 (15)	0.0213 (12)	-0.0006 (13)	0.0047 (12)
C4	0.0618 (17)	0.0286 (11)	0.0500 (15)	0.0080 (11)	0.0084 (15)	0.0008 (11)
C5	0.0567 (16)	0.0327 (12)	0.0392 (13)	-0.0037 (12)	0.0022 (12)	0.0010 (10)
C6	0.0382 (13)	0.0343 (12)	0.0420 (13)	0.0049 (10)	-0.0002 (11)	0.0035 (10)
C7	0.0409 (14)	0.082 (2)	0.0605 (19)	0.0158 (15)	-0.0150 (13)	-0.0022 (17)
C8	0.0340 (11)	0.0311 (11)	0.0337 (11)	0.0024 (9)	-0.0040 (11)	-0.0019 (9)
C9	0.0400 (12)	0.0362 (13)	0.0475 (15)	-0.0018 (11)	0.0057 (11)	-0.0039 (11)

Geometric parameters (Å, °)

Cl1—C5	1.748 (3)	C4—C5	1.371 (4)	
O1—C2	1.371 (3)	C4—H4	0.9300	
O1—C7	1.422 (3)	C5—C6	1.384 (3)	
N1-C8	1.285 (3)	С6—Н6	0.9300	
N1-N1 ⁱ	1.415 (3)	С7—Н7А	0.9600	
C1—C6	1.391 (3)	С7—Н7В	0.9600	
C1—C2	1.403 (3)	С7—Н7С	0.9600	
C1—C8	1.494 (3)	C8—C9	1.493 (3)	
C2—C3	1.395 (4)	С9—Н9А	0.9600	
C3—C4	1.389 (4)	С9—Н9В	0.9600	
С3—Н3	0.9300	С9—Н9С	0.9600	
C2C7	118.2 (2)	С5—С6—Н6	120.1	
C8—N1—N1 ⁱ	113.8 (2)	С1—С6—Н6	120.1	
C6—C1—C2	119.2 (2)	O1—C7—H7A	109.5	
C6—C1—C8	118.9 (2)	O1—C7—H7B	109.5	
C2—C1—C8	121.9 (2)	H7A—C7—H7B	109.5	
O1—C2—C3	123.4 (2)	O1—C7—H7C	109.5	
01—C2—C1	116.53 (19)	H7A—C7—H7C	109.5	
C3—C2—C1	120.0 (2)	H7B—C7—H7C	109.5	
C4—C3—C2	119.9 (2)	N1C8C9	124.3 (2)	
С4—С3—Н3	120.0	N1—C8—C1	114.8 (2)	
С2—С3—Н3	120.0	C9—C8—C1	120.9 (2)	

C5—C4—C3	119.6 (2)	С8—С9—Н9А	109.5
C5—C4—H4	120.2	С8—С9—Н9В	109.5
C3—C4—H4	120.2	Н9А—С9—Н9В	109.5
C4—C5—C6	121.5 (3)	С8—С9—Н9С	109.5
C4—C5—Cl1	119.57 (19)	Н9А—С9—Н9С	109.5
C6—C5—C11	118.9 (2)	H9B—C9—H9C	109.5
C5—C6—C1	119.7 (2)		
C7—O1—C2—C3	-1.7 (4)	C4—C5—C6—C1	-0.1 (4)
C7—O1—C2—C1	176.4 (2)	Cl1—C5—C6—C1	-179.54 (19)
C6—C1—C2—O1	179.7 (2)	C2-C1-C6-C5	1.3 (4)
C8—C1—C2—O1	-0.2 (3)	C8—C1—C6—C5	-178.8 (2)
C6-C1-C2-C3	-2.1 (4)	N1 ⁱ —N1—C8—C9	-3.8 (3)
C8—C1—C2—C3	178.0 (2)	N1 ⁱ —N1—C8—C1	179.13 (16)
O1—C2—C3—C4	179.8 (2)	C6—C1—C8—N1	48.8 (3)
C1—C2—C3—C4	1.7 (4)	C2C1C8N1	-131.3 (2)
C2—C3—C4—C5	-0.5 (4)	C6—C1—C8—C9	-128.4 (2)
C3—C4—C5—C6	-0.3 (4)	C2—C1—C8—C9	51.5 (3)
C3—C4—C5—Cl1	179.2 (2)		

Symmetry code: (i) -x+1, -y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С9—Н9В…О1 ^{іі}	0.96	2.68	3.521 (3)	146

Symmetry code: (ii) x, y, z-1.