organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Methyl­phen­yl)-3-phenyl-5-(2-pyrid­yl)-4H-1,2,4-triazole

aSchool of Chemistry and Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wangzx0908@yahoo.com.cn

(Received 4 November 2009; accepted 18 November 2009; online 25 November 2009)

In the title compound, C20H16N4, the m-tolyl and phenyl substituents form dihedral angles of 74.20 (6) and 36.94 (8)°, respectively, with the 1,2,4-triazole ring and the dihedral angle between the triazole and pyridine rings is 36.06 (9)°. In the crystal, mol­ecules are linked by C—H⋯N and C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Klingsberg (1958[Klingsberg, E. (1958). J. Org. Chem. 23, 1086-1087.]). For related structures, see: Wang et al. (2005[Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033-o2034.]); Huang et al. (2008[Huang, L., Wang, Z., Zhang, X. & Wu, P. (2008). Acta Cryst. E64, m741-m742.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N4

  • Mr = 312.37

  • Monoclinic, P 21 /c

  • a = 11.246 (3) Å

  • b = 9.377 (2) Å

  • c = 18.956 (5) Å

  • β = 124.655 (16)°

  • V = 1644.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.65 × 0.50 × 0.27 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.787, Tmax = 1.000

  • 16277 measured reflections

  • 3751 independent reflections

  • 2691 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.162

  • S = 1.06

  • 3751 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N2i 0.93 2.60 3.375 (3) 142
C20—H20A⋯N2ii 0.96 2.62 3.549 (4) 163
C10—H10⋯Cg1ii 0.93 2.72 3.646 (3) 175
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 is the centroid of the C3–C8 ring.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Recently we have prepared some new 1,2,4-triazoles and their complexes (Wang et al., 2005; Huang et al., 2008). We report here the crystal structure of the title compound.

Related literature top

For the synthesis of the title compound, see: Klingsberg (1958). For related structures, see: Wang et al. (2005); Huang et al. (2008). Cg1is the centroid of the C3–C8 ring.

Experimental top

The title compound was prepared by the reaction of 3,3'– dimethylphenylphosphazoanilide (2.90, 12 mmol) with N-benzoyl-N'-(2-pyridoyl)hydrazine (2.41 g, 10 mmol) in N,N-dimethylaniline at 463–473 K for 5 hrs (Klingsberg, 1958). Single crystals suitable for X-ray diffraction were obtained by recrystallization from water.

Refinement top

Positional parameters of all the H atoms were calculated geometrically. The H atoms were allowed to ride on the C atoms to which they were bonded, riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl); Uiso(H) = 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labelling. Displacement ellipsoids are shown at the 30% probability level.
4-(3-Methylphenyl)-3-phenyl-5-(2-pyridyl)-4H-1,2,4-triazole top
Crystal data top
C20H16N4F(000) = 656
Mr = 312.37Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3426 reflections
a = 11.246 (3) Åθ = 2.3–27.5°
b = 9.377 (2) ŵ = 0.08 mm1
c = 18.956 (5) ÅT = 293 K
β = 124.655 (16)°Block, white
V = 1644.3 (7) Å30.65 × 0.50 × 0.27 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3751 independent reflections
Radiation source: fine-focus sealed tube2691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scanθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1414
Tmin = 0.787, Tmax = 1.000k = 1212
16277 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.1727P]
where P = (Fo2 + 2Fc2)/3
3751 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H16N4V = 1644.3 (7) Å3
Mr = 312.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.246 (3) ŵ = 0.08 mm1
b = 9.377 (2) ÅT = 293 K
c = 18.956 (5) Å0.65 × 0.50 × 0.27 mm
β = 124.655 (16)°
Data collection top
Rigaku SCXmini
diffractometer
3751 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2691 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 1.000Rint = 0.040
16277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
3751 reflectionsΔρmin = 0.23 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91724 (18)0.14398 (19)0.88581 (11)0.0461 (4)
C20.74890 (17)0.02378 (18)0.77576 (11)0.0447 (4)
C31.05742 (18)0.1952 (2)0.95950 (11)0.0481 (4)
C41.0759 (2)0.3404 (2)0.97830 (14)0.0603 (5)
H41.00170.40380.94270.072*
C51.2038 (2)0.3906 (2)1.04945 (15)0.0703 (6)
H51.21510.48761.06190.084*
C61.3143 (2)0.2978 (3)1.10189 (14)0.0684 (6)
H61.40050.33171.14980.082*
C71.2969 (2)0.1545 (2)1.08313 (12)0.0618 (5)
H71.37190.09171.11860.074*
C81.16981 (19)0.1029 (2)1.01265 (11)0.0513 (4)
H81.15940.00581.00070.062*
C90.67146 (17)0.07496 (19)0.70258 (10)0.0457 (4)
C100.6617 (2)0.1881 (3)0.59246 (13)0.0687 (6)
H100.70400.21010.56360.082*
C110.5267 (2)0.2440 (2)0.56156 (13)0.0679 (6)
H110.47920.30090.51270.081*
C120.4644 (2)0.2140 (2)0.60434 (13)0.0625 (5)
H120.37400.25070.58520.075*
C130.53747 (18)0.1287 (2)0.67597 (12)0.0529 (5)
H130.49730.10740.70620.063*
C141.00456 (17)0.05403 (19)0.83598 (10)0.0445 (4)
C151.08632 (18)0.0030 (2)0.80966 (11)0.0510 (4)
H151.07130.09670.79030.061*
C161.19103 (19)0.0793 (2)0.81200 (13)0.0595 (5)
C171.2116 (2)0.2171 (3)0.84272 (14)0.0676 (6)
H171.28150.27350.84470.081*
C181.1320 (2)0.2735 (2)0.87042 (13)0.0693 (6)
H181.14940.36600.89170.083*
C191.0255 (2)0.1913 (2)0.86644 (12)0.0583 (5)
H190.96950.22830.88400.070*
C201.2756 (3)0.0194 (3)0.7795 (2)0.1004 (10)
H20A1.26600.08140.73630.151*
H20B1.23900.07340.75550.151*
H20C1.37570.01200.82620.151*
N10.68517 (15)0.12089 (17)0.79297 (10)0.0527 (4)
N20.79217 (16)0.19790 (17)0.86336 (10)0.0536 (4)
N30.89575 (14)0.03337 (15)0.83260 (9)0.0441 (3)
N40.73453 (16)0.1044 (2)0.66152 (10)0.0615 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0450 (9)0.0508 (9)0.0478 (9)0.0015 (8)0.0295 (8)0.0013 (8)
C20.0375 (9)0.0539 (9)0.0450 (9)0.0015 (7)0.0247 (8)0.0039 (8)
C30.0455 (9)0.0578 (10)0.0489 (9)0.0031 (8)0.0316 (8)0.0057 (8)
C40.0523 (11)0.0593 (12)0.0703 (12)0.0002 (9)0.0354 (10)0.0096 (10)
C50.0653 (13)0.0683 (13)0.0807 (15)0.0140 (11)0.0436 (12)0.0243 (12)
C60.0563 (12)0.0908 (16)0.0562 (11)0.0201 (11)0.0308 (10)0.0193 (11)
C70.0533 (11)0.0786 (14)0.0473 (10)0.0022 (10)0.0250 (9)0.0035 (10)
C80.0529 (10)0.0559 (10)0.0445 (9)0.0026 (8)0.0273 (9)0.0014 (8)
C90.0408 (9)0.0534 (10)0.0433 (9)0.0030 (7)0.0242 (8)0.0071 (7)
C100.0587 (12)0.0980 (16)0.0542 (11)0.0093 (12)0.0349 (10)0.0124 (11)
C110.0525 (12)0.0875 (15)0.0519 (11)0.0106 (10)0.0226 (10)0.0141 (11)
C120.0395 (10)0.0748 (13)0.0626 (12)0.0098 (9)0.0227 (9)0.0021 (10)
C130.0409 (9)0.0652 (11)0.0542 (10)0.0010 (8)0.0280 (8)0.0045 (9)
C140.0375 (9)0.0542 (10)0.0400 (8)0.0046 (7)0.0210 (7)0.0040 (7)
C150.0403 (9)0.0629 (11)0.0487 (10)0.0006 (8)0.0245 (8)0.0053 (8)
C160.0403 (10)0.0791 (14)0.0584 (11)0.0024 (9)0.0277 (9)0.0208 (10)
C170.0481 (11)0.0823 (15)0.0605 (12)0.0146 (10)0.0237 (10)0.0190 (11)
C180.0746 (14)0.0596 (12)0.0589 (12)0.0203 (10)0.0292 (11)0.0003 (10)
C190.0645 (12)0.0581 (11)0.0536 (11)0.0049 (9)0.0344 (10)0.0005 (9)
C200.0799 (17)0.123 (2)0.132 (2)0.0221 (16)0.0802 (18)0.047 (2)
N10.0420 (8)0.0610 (9)0.0584 (9)0.0034 (7)0.0304 (7)0.0005 (8)
N20.0450 (8)0.0583 (9)0.0599 (9)0.0028 (7)0.0314 (8)0.0045 (7)
N30.0379 (7)0.0515 (8)0.0450 (7)0.0017 (6)0.0249 (6)0.0015 (6)
N40.0491 (9)0.0881 (12)0.0516 (9)0.0111 (8)0.0313 (8)0.0086 (8)
Geometric parameters (Å, º) top
C1—N21.317 (2)C11—C121.368 (3)
C1—N31.369 (2)C11—H110.9300
C1—C31.470 (2)C12—C131.375 (3)
C2—N11.310 (2)C12—H120.9300
C2—N31.368 (2)C13—H130.9300
C2—C91.472 (2)C14—C191.375 (3)
C3—C81.383 (3)C14—C151.379 (2)
C3—C41.393 (3)C14—N31.444 (2)
C4—C51.379 (3)C15—C161.388 (2)
C4—H40.9300C15—H150.9300
C5—C61.373 (3)C16—C171.381 (3)
C5—H50.9300C16—C201.504 (3)
C6—C71.375 (3)C17—C181.375 (3)
C6—H60.9300C17—H170.9300
C7—C81.375 (3)C18—C191.390 (3)
C7—H70.9300C18—H180.9300
C8—H80.9300C19—H190.9300
C9—N41.346 (2)C20—H20A0.9600
C9—C131.384 (2)C20—H20B0.9600
C10—N41.335 (3)C20—H20C0.9600
C10—C111.383 (3)N1—N21.387 (2)
C10—H100.9300
N2—C1—N3110.12 (15)C13—C12—H12120.5
N2—C1—C3123.56 (16)C12—C13—C9119.16 (18)
N3—C1—C3126.29 (15)C12—C13—H13120.4
N1—C2—N3110.15 (15)C9—C13—H13120.4
N1—C2—C9123.91 (15)C19—C14—C15121.67 (16)
N3—C2—C9125.86 (15)C19—C14—N3119.22 (16)
C8—C3—C4118.92 (17)C15—C14—N3119.10 (16)
C8—C3—C1122.00 (17)C14—C15—C16120.07 (19)
C4—C3—C1119.04 (17)C14—C15—H15120.0
C5—C4—C3120.3 (2)C16—C15—H15120.0
C5—C4—H4119.9C17—C16—C15117.99 (19)
C3—C4—H4119.9C17—C16—C20121.9 (2)
C6—C5—C4120.2 (2)C15—C16—C20120.1 (2)
C6—C5—H5119.9C18—C17—C16122.09 (18)
C4—C5—H5119.9C18—C17—H17119.0
C5—C6—C7119.64 (19)C16—C17—H17119.0
C5—C6—H6120.2C17—C18—C19119.6 (2)
C7—C6—H6120.2C17—C18—H18120.2
C8—C7—C6120.8 (2)C19—C18—H18120.2
C8—C7—H7119.6C14—C19—C18118.5 (2)
C6—C7—H7119.6C14—C19—H19120.7
C7—C8—C3120.15 (19)C18—C19—H19120.7
C7—C8—H8119.9C16—C20—H20A109.5
C3—C8—H8119.9C16—C20—H20B109.5
N4—C9—C13122.49 (17)H20A—C20—H20B109.5
N4—C9—C2116.73 (15)C16—C20—H20C109.5
C13—C9—C2120.72 (16)H20A—C20—H20C109.5
N4—C10—C11123.52 (19)H20B—C20—H20C109.5
N4—C10—H10118.2C2—N1—N2107.66 (14)
C11—C10—H10118.2C1—N2—N1107.09 (14)
C12—C11—C10118.65 (19)C2—N3—C1104.97 (13)
C12—C11—H11120.7C2—N3—C14127.64 (14)
C10—C11—H11120.7C1—N3—C14127.40 (13)
C11—C12—C13119.03 (18)C10—N4—C9117.14 (16)
C11—C12—H12120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N2i0.932.603.375 (3)142
C20—H20A···N2ii0.962.623.549 (4)163
C10—H10···Cg1ii0.932.723.646 (3)175
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H16N4
Mr312.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.246 (3), 9.377 (2), 18.956 (5)
β (°) 124.655 (16)
V3)1644.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.65 × 0.50 × 0.27
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.787, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16277, 3751, 2691
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.162, 1.06
No. of reflections3751
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N2i0.932.603.375 (3)141.5
C20—H20A···N2ii0.962.623.549 (4)162.7
C10—H10···Cg1ii0.932.723.646 (3)174.5
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

We are grateful to Jingye Pharmochemical Pilot Plant for financial assistance through project 8507041056.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHuang, L., Wang, Z., Zhang, X. & Wu, P. (2008). Acta Cryst. E64, m741–m742.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlingsberg, E. (1958). J. Org. Chem. 23, 1086–1087.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033–o2034.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds