metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(dicyanamido-κN1)bis­­[2-(2-hy­droxy­ethyl)pyridine-κ2N,O]nickel(II)

aDongchang College of Liaocheng University, Shandong 252059, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 12 September 2009; accepted 21 October 2009; online 7 November 2009)

In the title complex, [Ni{N(CN)2}2(C7H9NO)2], the NiII ion (site symmetry [\overline{1}]) adopts a distorted trans-NiO2N4 octa­hedral geometry. In the crystal, inter­molecular O—H⋯N hydrogen bonds link the mol­ecules, forming a chain along the c axis.

Related literature

For related structures, see: Boskovic et al. (2002[Boskovic, C., Brechin, E. K. & Christou, G. (2002). J. Am. Chem. Soc. 124, 3725-3736.]); Sanudo et al. (2003[Sanudo, E. C., Wernsdorfer, W. & Christou, G. (2003). Polyhedron, 22, 2267-2271.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2N3)2(C7H9NO)2]

  • Mr = 437.11

  • Triclinic, [P \overline 1]

  • a = 8.1498 (1) Å

  • b = 8.76020 (11) Å

  • c = 8.9201 (12) Å

  • α = 100.841 (1)°

  • β = 110.588 (2)°

  • γ = 115.359 (2)°

  • V = 493.66 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 298 K

  • 0.28 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.764, Tmax = 0.863

  • 2566 measured reflections

  • 1718 independent reflections

  • 1579 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.00

  • 1718 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N2 2.065 (2)
Ni1—O1 2.0748 (16)
Ni1—N1 2.095 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4i 0.82 1.89 2.711 (3) 175
Symmetry code: (i) -x, -y, -z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years there has been considerable interest in metal complexes supported by hydroxyethyl-pyridine,the ligand due to its versatile coordination activities and bridging function. (Sanudo et al., 2003; Boskovic et al., 2002). As an extension of this work, we have synthesized the title compound, (I), and report herein its crystal structure.

The complex (Fig. 1) consists of two L2-(L = (hydroxyethyl)(pyridine)) ligands, one NiII ion and two dicyanmiden ligands. The coordination geometry around the Ni center is octahedral with a NiN4O2 ligand set (Table 1). Two atoms N1 of hydroxyethylpyridine ligand occpy the axial sites. In the crystal structure, intermolecular O—H···N hydrogen bonds link molecules to form a one-dimensional chain along to the c axis (Table 2).

Related literature top

For related structures, see: Boskovic et al. (2002); Sanudo et al. (2003).

Experimental top

2-Hydroxyethylpyridine (0.123 g, 1 mmol) was deprotonated by Et4NOH (25%) in the prensence of nickel nitrate hexahydrate (0.5 mmol, 0.127 g) in a mixture of methanol and acetonitrile (V/V = 1:1) after the solution was stirred at room temperature for 0.5 h. Sodium dicyanmiden (5 mmol 0.486 g) was added to the above solution and then further stirred for 1 h. The resulting clear solution was filtered and left to stand at room temperature. Green blocks of (I) were obtained by slow evaporation of the solvents within 2 weeks. MP = 518-520 K (decomp).

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.93–0.97Å [Uiso(H) = 1.2Ueq(C)] and O—H = 0.82 Å [Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids. Atoms labelled with the suffix A are generated by the symmetry operation (-x + 1,-y,-z + 1). H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of (I), viewed approximately along the c axis.
Bis(dicyanamido-κN1)bis[2-(2-hydroxyethyl)pyridine- κ2N,O]nickel(II) top
Crystal data top
[Ni(C2N3)2(C7H9NO)2]Z = 1
Mr = 437.11F(000) = 226
Triclinic, P1Dx = 1.47 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1498 (1) ÅCell parameters from 1464 reflections
b = 8.76020 (11) Åθ = 2.7–26.3°
c = 8.9201 (12) ŵ = 1.02 mm1
α = 100.841 (1)°T = 298 K
β = 110.588 (2)°Block, green
γ = 115.359 (2)°0.28 × 0.20 × 0.15 mm
V = 493.66 (7) Å3
Data collection top
Bruker SMART CCD
diffractometer
1718 independent reflections
Radiation source: fine-focus sealed tube1579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.764, Tmax = 0.863k = 710
2566 measured reflectionsl = 108
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.0746P]
where P = (Fo2 + 2Fc2)/3
1718 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Ni(C2N3)2(C7H9NO)2]γ = 115.359 (2)°
Mr = 437.11V = 493.66 (7) Å3
Triclinic, P1Z = 1
a = 8.1498 (1) ÅMo Kα radiation
b = 8.76020 (11) ŵ = 1.02 mm1
c = 8.9201 (12) ÅT = 298 K
α = 100.841 (1)°0.28 × 0.20 × 0.15 mm
β = 110.588 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1579 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.863Rint = 0.016
2566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.00Δρmax = 0.53 e Å3
1718 reflectionsΔρmin = 0.22 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.03081 (18)
N10.7472 (3)0.2759 (3)0.6426 (3)0.0341 (5)
N20.4639 (3)0.0453 (3)0.2748 (3)0.0415 (5)
N30.3758 (4)0.1688 (4)0.0579 (4)0.0700 (9)
N40.0438 (5)0.0438 (4)0.1949 (4)0.0731 (9)
O10.2970 (3)0.0824 (2)0.5031 (2)0.0411 (4)
H10.19710.04140.40670.062*
C10.3611 (5)0.2644 (4)0.6012 (4)0.0548 (8)
H1A0.25230.26120.62450.066*
H1B0.38490.33900.53430.066*
C20.5577 (5)0.3491 (4)0.7713 (4)0.0537 (8)
H2A0.57710.45620.84950.064*
H2B0.54220.26080.82490.064*
C30.7468 (4)0.4061 (4)0.7512 (3)0.0418 (6)
C40.9168 (5)0.5852 (4)0.8400 (4)0.0614 (9)
H40.91430.67380.91360.074*
C51.0883 (5)0.6328 (4)0.8202 (5)0.0653 (9)
H51.20390.75280.88170.078*
C61.0887 (5)0.5030 (4)0.7096 (4)0.0559 (8)
H61.20340.53260.69320.067*
C70.9155 (4)0.3274 (4)0.6227 (4)0.0428 (6)
H70.91510.23920.54560.051*
C80.4109 (4)0.0950 (4)0.1684 (3)0.0375 (6)
C90.1941 (5)0.0937 (4)0.0759 (4)0.0489 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0250 (3)0.0319 (3)0.0300 (3)0.0149 (2)0.00897 (19)0.01179 (19)
N10.0305 (11)0.0347 (11)0.0322 (10)0.0171 (9)0.0116 (9)0.0121 (9)
N20.0354 (12)0.0455 (13)0.0324 (11)0.0182 (11)0.0097 (10)0.0168 (10)
N30.0383 (14)0.0750 (19)0.0627 (17)0.0120 (13)0.0049 (13)0.0479 (16)
N40.0540 (17)0.096 (2)0.0586 (17)0.0432 (17)0.0088 (15)0.0389 (17)
O10.0317 (9)0.0441 (10)0.0426 (10)0.0243 (8)0.0104 (8)0.0135 (8)
C10.0432 (16)0.0479 (17)0.079 (2)0.0307 (14)0.0288 (16)0.0222 (16)
C20.0537 (18)0.0443 (16)0.0553 (18)0.0233 (15)0.0298 (15)0.0066 (14)
C30.0383 (14)0.0379 (14)0.0383 (14)0.0186 (12)0.0138 (12)0.0090 (12)
C40.055 (2)0.0382 (16)0.065 (2)0.0180 (15)0.0240 (17)0.0000 (15)
C50.0440 (18)0.0349 (16)0.084 (2)0.0086 (14)0.0234 (17)0.0074 (16)
C60.0350 (15)0.0443 (16)0.072 (2)0.0136 (13)0.0231 (15)0.0168 (15)
C70.0343 (14)0.0380 (14)0.0502 (16)0.0177 (12)0.0188 (13)0.0140 (13)
C80.0251 (12)0.0406 (14)0.0343 (13)0.0117 (11)0.0108 (11)0.0133 (12)
C90.0486 (17)0.0551 (17)0.0520 (17)0.0306 (15)0.0239 (15)0.0326 (15)
Geometric parameters (Å, º) top
Ni1—N2i2.065 (2)C1—C21.506 (4)
Ni1—N22.065 (2)C1—H1A0.9700
Ni1—O12.0748 (16)C1—H1B0.9700
Ni1—O1i2.0748 (16)C2—C31.491 (4)
Ni1—N12.095 (2)C2—H2A0.9700
Ni1—N1i2.095 (2)C2—H2B0.9700
N1—C71.337 (3)C3—C41.381 (4)
N1—C31.353 (3)C4—C51.365 (5)
N2—C81.142 (3)C4—H40.9300
N3—C81.293 (3)C5—C61.360 (5)
N3—C91.296 (4)C5—H50.9300
N4—C91.127 (4)C6—C71.372 (4)
O1—C11.422 (3)C6—H60.9300
O1—H10.8200C7—H70.9300
N2i—Ni1—N2180.0O1—C1—H1B109.6
N2i—Ni1—O192.61 (8)C2—C1—H1B109.6
N2—Ni1—O187.39 (8)H1A—C1—H1B108.1
N2i—Ni1—O1i87.39 (8)C3—C2—C1113.5 (3)
N2—Ni1—O1i92.61 (8)C3—C2—H2A108.9
O1—Ni1—O1i180.0C1—C2—H2A108.9
N2i—Ni1—N191.92 (8)C3—C2—H2B108.9
N2—Ni1—N188.08 (8)C1—C2—H2B108.9
O1—Ni1—N189.07 (7)H2A—C2—H2B107.7
O1i—Ni1—N190.93 (7)N1—C3—C4120.6 (3)
N2i—Ni1—N1i88.08 (8)N1—C3—C2117.7 (2)
N2—Ni1—N1i91.92 (8)C4—C3—C2121.7 (3)
O1—Ni1—N1i90.93 (7)C5—C4—C3120.3 (3)
O1i—Ni1—N1i89.07 (7)C5—C4—H4119.8
N1—Ni1—N1i180.0C3—C4—H4119.8
C7—N1—C3117.8 (2)C6—C5—C4119.4 (3)
C7—N1—Ni1117.74 (17)C6—C5—H5120.3
C3—N1—Ni1124.45 (18)C4—C5—H5120.3
C8—N2—Ni1156.7 (2)C5—C6—C7118.3 (3)
C8—N3—C9122.3 (3)C5—C6—H6120.8
C1—O1—Ni1124.15 (16)C7—C6—H6120.8
C1—O1—H1109.5N1—C7—C6123.6 (3)
Ni1—O1—H1113.9N1—C7—H7118.2
O1—C1—C2110.2 (2)C6—C7—H7118.2
O1—C1—H1A109.6N2—C8—N3172.5 (3)
C2—C1—H1A109.6N4—C9—N3173.2 (3)
N2i—Ni1—N1—C7115.4 (2)O1—C1—C2—C374.7 (3)
N2—Ni1—N1—C764.6 (2)C7—N1—C3—C41.0 (4)
O1—Ni1—N1—C7152.00 (19)Ni1—N1—C3—C4179.8 (2)
O1i—Ni1—N1—C728.00 (19)C7—N1—C3—C2179.1 (3)
N2i—Ni1—N1—C365.8 (2)Ni1—N1—C3—C20.3 (3)
N2—Ni1—N1—C3114.2 (2)C1—C2—C3—N156.9 (4)
O1—Ni1—N1—C326.8 (2)C1—C2—C3—C4123.2 (3)
O1i—Ni1—N1—C3153.2 (2)N1—C3—C4—C50.5 (5)
O1—Ni1—N2—C89.2 (5)C2—C3—C4—C5179.4 (3)
O1i—Ni1—N2—C8170.8 (5)C3—C4—C5—C61.3 (6)
N1—Ni1—N2—C880.0 (5)C4—C5—C6—C70.6 (5)
N1i—Ni1—N2—C8100.0 (5)C3—N1—C7—C61.8 (4)
N2i—Ni1—O1—C184.2 (2)Ni1—N1—C7—C6179.3 (2)
N2—Ni1—O1—C195.8 (2)C5—C6—C7—N11.0 (5)
N1—Ni1—O1—C17.7 (2)Ni1—N2—C8—N3104 (2)
N1i—Ni1—O1—C1172.3 (2)C9—N3—C8—N2177 (2)
Ni1—O1—C1—C234.9 (3)C8—N3—C9—N4172 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4ii0.821.892.711 (3)175
Symmetry code: (ii) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C2N3)2(C7H9NO)2]
Mr437.11
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.1498 (1), 8.76020 (11), 8.9201 (12)
α, β, γ (°)100.841 (1), 110.588 (2), 115.359 (2)
V3)493.66 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.28 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.764, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
2566, 1718, 1579
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.00
No. of reflections1718
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.22

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N22.065 (2)Ni1—N12.095 (2)
Ni1—O12.0748 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.821.892.711 (3)175
Symmetry code: (i) x, y, z.
 

References

First citationBoskovic, C., Brechin, E. K. & Christou, G. (2002). J. Am. Chem. Soc. 124, 3725–3736.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSanudo, E. C., Wernsdorfer, W. & Christou, G. (2003). Polyhedron, 22, 2267–2271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds