organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Methyl­phen­yl)-2-thioxo-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 31 October 2009; accepted 1 November 2009; online 7 November 2009)

In the title compound, C10H9NOS2, the 1,3-thia­zolidine and 2-methyl­phenyl rings are oriented at a dihedral angle of 84.44 (9)°. In the crystal, an unusual bifurcated C—H⋯(O,π) inter­action leads to zigzag chains of mol­ecules.

Related literature

For background to rhodanine derivatives, see: Cutshall et al. (2005[Cutshall, N. S., O'Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374-3379.]). For related structures, see: Shahwar et al. (2009a[Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903.],b[Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637.],c[Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NOS2

  • Mr = 223.30

  • Monoclinic, C 2/c

  • a = 23.690 (5) Å

  • b = 7.1401 (17) Å

  • c = 14.628 (3) Å

  • β = 122.215 (6)°

  • V = 2093.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 296 K

  • 0.34 × 0.16 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.934

  • 10878 measured reflections

  • 2661 independent reflections

  • 1436 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.189

  • S = 1.02

  • 2661 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.58 3.214 (5) 123
C8—H8ACg2i 0.97 2.65 3.420 (4) 137
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Rhodanine-based molecules have been popular as small molecule inhibitors of numerous targets such as HCV NS3 protease, aldose reductase, beta-lactamase, UDP-N-acetylmuramate/L-alanine ligase, antidiabetic agents, cathepsin D, and histidine decarboxylase (Cutshall et al., 2005). We herein, report the crystal structure and preparation of the title compound (I, Fig. 1) which is one of the rhodanine derivatives from the series of compounds prepared by our group for beta-lactamase and xanthine oxidase enzyme inhibition studies.

The crystal structures of (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl- 2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009a), (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar et al., 2009b) and (IV) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009c) have been reported which are the rhodanine derivatives. The crystal stucture of (II) contains (I) as a group.

In (I), the 2-methylphenyl A (C1–C6/C10) and the rhodanine group B (N1/C7/C8/S1/C9/O1/S2) are planar with maximum r. m. s. deviations of 0.0051 and 0.0387 Å respectively, from their mean square planes. The dihedral angle between A/B is 84.44 (9)°. The molecules are stabilized in the form of zig–zag infinte one dimensional polymeric chains due to intermolecular H-bondings (Table 1, Fig. 2). The C–H···π interaction (Table 1) also play a role in stabilizing the molecules.

Related literature top

For background to rhodanine derivatives, see: Cutshall et al. (2005). For related structures, see: Shahwar et al. (2009a,b,c). Cg2 is the centroid of the C1–C6 ring.

Experimental top

The title compound was prepared by a three step reaction procedure. In the first step ortho toluidine aniline (10.7 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.

In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned dark yellow.

In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get the dark yellow needles of (I).

Refinement top

The coordinates of H2 were refined. The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)..

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
3-(2-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one top
Crystal data top
C10H9NOS2F(000) = 928
Mr = 223.30Dx = 1.417 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2661 reflections
a = 23.690 (5) Åθ = 2.8–28.7°
b = 7.1401 (17) ŵ = 0.47 mm1
c = 14.628 (3) ÅT = 296 K
β = 122.215 (6)°Cut needle, dark yellow
V = 2093.5 (8) Å30.34 × 0.16 × 0.14 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2661 independent reflections
Radiation source: fine-focus sealed tube1436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 2.8°
ω scansh = 3130
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 95
Tmin = 0.914, Tmax = 0.934l = 1719
10878 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0949P)2 + 0.6816P]
where P = (Fo2 + 2Fc2)/3
2661 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C10H9NOS2V = 2093.5 (8) Å3
Mr = 223.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.690 (5) ŵ = 0.47 mm1
b = 7.1401 (17) ÅT = 296 K
c = 14.628 (3) Å0.34 × 0.16 × 0.14 mm
β = 122.215 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1436 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.934Rint = 0.061
10878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.02Δρmax = 0.63 e Å3
2661 reflectionsΔρmin = 0.31 e Å3
128 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21396 (5)0.00494 (13)0.00417 (7)0.0612 (3)
S20.07182 (5)0.09169 (18)0.10373 (8)0.0903 (4)
O10.26644 (11)0.2834 (4)0.24779 (19)0.0733 (9)
N10.17183 (11)0.1968 (3)0.09176 (18)0.0475 (8)
C10.12842 (14)0.2941 (4)0.1167 (2)0.0499 (10)
C20.11018 (15)0.4752 (5)0.0824 (2)0.0527 (10)
C30.06977 (17)0.5655 (6)0.1131 (3)0.0672 (12)
C40.05067 (19)0.4719 (7)0.1737 (3)0.0768 (16)
C50.0691 (2)0.2946 (7)0.2068 (3)0.0779 (16)
C60.10811 (17)0.2011 (6)0.1777 (3)0.0660 (14)
C70.23984 (15)0.1956 (5)0.1655 (2)0.0509 (11)
C80.27516 (16)0.0721 (5)0.1295 (3)0.0555 (11)
C90.14858 (16)0.1022 (4)0.0033 (3)0.0537 (11)
C100.1303 (2)0.5694 (6)0.0175 (3)0.0726 (14)
H30.056150.688530.092010.0808*
H40.023850.533410.192830.0918*
H50.055680.235550.248810.0933*
H60.120660.077450.198690.0793*
H8A0.294800.034300.177670.0668*
H8B0.310390.140840.129180.0668*
H10A0.114830.500090.047900.1090*
H10B0.178060.578080.056990.1090*
H10C0.111400.692910.000170.1090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0782 (6)0.0598 (6)0.0604 (5)0.0158 (4)0.0468 (5)0.0023 (4)
S20.0723 (7)0.0974 (9)0.0678 (7)0.0173 (6)0.0150 (5)0.0333 (6)
O10.0542 (14)0.097 (2)0.0562 (14)0.0095 (13)0.0211 (12)0.0126 (14)
N10.0499 (14)0.0541 (16)0.0422 (13)0.0081 (11)0.0271 (12)0.0011 (11)
C10.0464 (16)0.0565 (19)0.0440 (16)0.0030 (13)0.0222 (14)0.0077 (14)
C20.0533 (18)0.064 (2)0.0423 (16)0.0056 (14)0.0265 (15)0.0023 (14)
C30.060 (2)0.075 (2)0.057 (2)0.0178 (17)0.0247 (17)0.0056 (18)
C40.057 (2)0.121 (4)0.061 (2)0.002 (2)0.0373 (19)0.013 (2)
C50.076 (3)0.103 (3)0.074 (2)0.016 (2)0.053 (2)0.012 (2)
C60.066 (2)0.086 (3)0.0577 (19)0.0094 (18)0.0409 (18)0.0094 (18)
C70.0538 (18)0.059 (2)0.0442 (17)0.0084 (15)0.0291 (15)0.0084 (15)
C80.0607 (19)0.063 (2)0.0565 (18)0.0147 (15)0.0404 (17)0.0164 (16)
C90.069 (2)0.0464 (18)0.0475 (17)0.0080 (14)0.0323 (16)0.0041 (14)
C100.089 (3)0.062 (2)0.079 (2)0.0073 (19)0.053 (2)0.008 (2)
Geometric parameters (Å, º) top
S1—C81.790 (4)C4—C51.343 (7)
S1—C91.734 (4)C5—C61.379 (7)
S2—C91.619 (4)C7—C81.492 (6)
O1—C71.196 (4)C3—H30.9300
N1—C11.440 (4)C4—H40.9300
N1—C71.381 (4)C5—H50.9300
N1—C91.370 (4)C6—H60.9300
C1—C21.371 (5)C8—H8A0.9700
C1—C61.388 (5)C8—H8B0.9700
C2—C31.412 (6)C10—H10A0.9600
C2—C101.436 (6)C10—H10B0.9600
C3—C41.366 (6)C10—H10C0.9600
C8—S1—C993.61 (19)S2—C9—N1126.4 (3)
C1—N1—C7119.9 (2)C2—C3—H3120.00
C1—N1—C9122.7 (3)C4—C3—H3120.00
C7—N1—C9117.4 (3)C3—C4—H4119.00
N1—C1—C2119.4 (3)C5—C4—H4119.00
N1—C1—C6118.1 (3)C4—C5—H5120.00
C2—C1—C6122.5 (3)C6—C5—H5120.00
C1—C2—C3116.7 (3)C1—C6—H6120.00
C1—C2—C10122.2 (4)C5—C6—H6120.00
C3—C2—C10121.1 (4)S1—C8—H8A110.00
C2—C3—C4119.9 (4)S1—C8—H8B110.00
C3—C4—C5122.6 (5)C7—C8—H8A110.00
C4—C5—C6119.2 (4)C7—C8—H8B110.00
C1—C6—C5119.1 (4)H8A—C8—H8B109.00
O1—C7—N1123.5 (3)C2—C10—H10A109.00
O1—C7—C8124.9 (3)C2—C10—H10B109.00
N1—C7—C8111.6 (3)C2—C10—H10C109.00
S1—C8—C7106.7 (3)H10A—C10—H10B110.00
S1—C9—S2123.3 (2)H10A—C10—H10C110.00
S1—C9—N1110.4 (3)H10B—C10—H10C110.00
C9—S1—C8—C74.5 (3)C7—N1—C9—S2177.0 (3)
C8—S1—C9—S2179.4 (2)N1—C1—C2—C3177.5 (3)
C8—S1—C9—N11.8 (3)N1—C1—C2—C103.1 (4)
C7—N1—C1—C294.3 (3)C6—C1—C2—C30.6 (5)
C7—N1—C1—C684.0 (4)C6—C1—C2—C10178.8 (3)
C9—N1—C1—C286.2 (4)N1—C1—C6—C5177.0 (3)
C9—N1—C1—C695.6 (4)C2—C1—C6—C51.2 (5)
C1—N1—C7—O15.7 (5)C1—C2—C3—C40.2 (5)
C1—N1—C7—C8174.3 (3)C10—C2—C3—C4179.2 (4)
C9—N1—C7—O1174.7 (3)C2—C3—C4—C50.4 (6)
C9—N1—C7—C85.4 (4)C3—C4—C5—C60.9 (7)
C1—N1—C9—S1177.9 (2)C4—C5—C6—C11.3 (6)
C1—N1—C9—S23.4 (4)O1—C7—C8—S1173.9 (3)
C7—N1—C9—S11.8 (3)N1—C7—C8—S16.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.583.214 (5)123
C8—H8A···Cg2i0.972.653.420 (4)137
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H9NOS2
Mr223.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.690 (5), 7.1401 (17), 14.628 (3)
β (°) 122.215 (6)
V3)2093.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.34 × 0.16 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.914, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
10878, 2661, 1436
Rint0.061
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.189, 1.02
No. of reflections2661
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.583.214 (5)123
C8—H8A···Cg2i0.972.653.420 (4)137
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

Durre Shahwar is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCutshall, N. S., O'Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374–3379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds