organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E)-1-[4-(Di­methyl­amino)phen­yl]pent-1-en-3-one

aDepartment of Chemistry, Forman Christian College (A Chartered University), Ferozpur Road Lahore 56400, Pakistan, and bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 5 November 2009; accepted 6 November 2009; online 11 November 2009)

The title mol­ecule, C13H17NO, is close to planar: the dihedral angle betweent the dimethyl amino group and the benzene ring is 7.94 (19)°. No significant inter­molecular inter­actions are observed in the crystal structure.

Related literature

For background to the pharmacological effects of chalcones, see: Nielsen et al. (1998[Nielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819-4832.]) and for their use as synthetic inter­mediates, see: Mukhtari et al. (1999[Mukhtari, S., Mujeebur Rahman, V. P., Ansari, W. A., Lemiere, G., Groot, A. D., & Dommisse, R. (1999). Molecules, 4, 232-237.]). For related structures, see: Nesterov et al. (2007[Nesterov, V. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2007). Acta Cryst. E63, o1785-o1787.]); Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Asghar, M. N., Khan, I. U. & Ashfaq, M. (2008). Acta Cryst. E64, o1413.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO

  • Mr = 203.28

  • Monoclinic, P 21 /c

  • a = 12.6079 (14) Å

  • b = 15.1331 (17) Å

  • c = 6.2182 (6) Å

  • β = 100.036 (5)°

  • V = 1168.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.37 × 0.33 × 0.19 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 and SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.986

  • 12449 measured reflections

  • 2779 independent reflections

  • 1051 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.234

  • S = 0.93

  • 2779 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Chalcones are biologically active compounds (e.g. Nielsen et al., 1998) and have also been used as intermediates for the synthesis of 4-thiazolidinones (Mukhtari et al., 1999).

The title compound (I) was synthesized by the condensation reaction of 4-(dimethylamino)benzaldehyde and 2-butanol. The molecule is structurally related to the 3,5-Bis[4-(dimethylamino)benzylidene]-1-propyl-4-piperidone(II) (Nesterov et al., 2007) and (1E,4E)-1,5-Bis(4-methylphenyl)penta-1,4-dien-3-one(III) (Arshad et al., 2008). The compound is almost planer while the dimethyl amino moity is oriented at dihedral angle of 7.94 (0.19) ° to the benzene ring. No significant hydrogen bonding interaction is found in the crystal structure.

Related literature top

For background to the pharmacological effects of chalcones, see: Nielsen et al. (1998) and for their use as synthetic intermediates, see: Mukhtari et al. (1999). For related structures, see: Nesterov et al. (2007); Arshad et al. (2008).

Experimental top

Sodium hydroxide (0.8 g, 0.0208 mmol) was dissolved in distilled water (10 ml) and ethanol (8 ml) in a round bottom flask. The solution was cooled to room temperature. Half of the mixture of 4-(dimethylamino)benzaldehyde (1 g, 0.0083 mmol) and 2-butanol (0.60 g, 0.0083 mmol) were added to the above solution and stirred at room temperature for 15 minute then the remaining mixture was added and stirred for 2 h under the same conditions. Yellow precipitate obtained was filtered and washed with cold water. The washed precipitate was crystallized in acetone under slow evaporation to yield yellow rods of (I).

Refinement top

The H-atoms for aromatic (C—H = 0.93), methyl (C—H = 0.96) and methylene (C—H = 0.97) carbon atoms were refined geometrically and treated as riding atoms: with Uiso(H) = 1.2Ueq for aromatic and methylene carbons and Uiso(H) = 1.5Ueq for methyl carbon atoms.

Computing details top

Data collection: APEXII (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing diagram.
(1E)-1-[4-(Dimethylamino)phenyl]pent-1-en-3-one top
Crystal data top
C13H17NOF(000) = 440
Mr = 203.28Dx = 1.156 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1287 reflections
a = 12.6079 (14) Åθ = 2.7–21.9°
b = 15.1331 (17) ŵ = 0.07 mm1
c = 6.2182 (6) ÅT = 296 K
β = 100.036 (5)°Rod, yellow
V = 1168.3 (2) Å30.37 × 0.33 × 0.19 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2779 independent reflections
Radiation source: fine-focus sealed tube1051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1616
Tmin = 0.974, Tmax = 0.986k = 1919
12449 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1169P)2]
where P = (Fo2 + 2Fc2)/3
2779 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H17NOV = 1168.3 (2) Å3
Mr = 203.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6079 (14) ŵ = 0.07 mm1
b = 15.1331 (17) ÅT = 296 K
c = 6.2182 (6) Å0.37 × 0.33 × 0.19 mm
β = 100.036 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2779 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1051 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.986Rint = 0.062
12449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.234H-atom parameters constrained
S = 0.93Δρmax = 0.19 e Å3
2779 reflectionsΔρmin = 0.15 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05777 (18)0.36843 (15)1.1136 (4)0.0547 (7)
O10.5620 (2)0.42215 (19)0.7701 (4)0.1083 (10)
C10.2477 (2)0.38513 (17)0.9326 (4)0.0519 (7)
C20.1656 (2)0.33421 (18)0.8155 (5)0.0563 (8)
H20.17900.30290.69440.068*
C30.0653 (2)0.32866 (18)0.8728 (4)0.0529 (8)
H30.01210.29470.78880.063*
C40.0421 (2)0.37361 (17)1.0567 (4)0.0472 (7)
C50.1260 (2)0.42154 (18)1.1781 (4)0.0539 (8)
H50.11450.45061.30370.065*
C60.2252 (2)0.42703 (19)1.1174 (5)0.0577 (8)
H60.27900.45991.20290.069*
C70.3527 (2)0.39618 (19)0.8680 (5)0.0601 (8)
H70.40200.43060.96040.072*
C80.3862 (2)0.3640 (2)0.6976 (5)0.0628 (8)
H80.33950.32870.60170.075*
C90.4952 (3)0.3811 (2)0.6492 (5)0.0633 (9)
C100.5181 (3)0.3440 (3)0.4438 (5)0.0832 (11)
H10A0.46500.36700.32520.100*
H10B0.50810.28050.44760.100*
C110.6267 (3)0.3614 (3)0.3914 (6)0.0963 (12)
H11A0.64040.42380.39670.144*
H11B0.62990.33960.24770.144*
H11C0.68010.33190.49600.144*
C120.1486 (2)0.3348 (2)0.9610 (5)0.0707 (9)
H12A0.15300.36480.82360.106*
H12B0.21370.34471.01780.106*
H12C0.13950.27260.94020.106*
C130.0816 (3)0.4196 (2)1.2966 (5)0.0650 (9)
H13A0.03450.40181.42770.097*
H13B0.15500.40971.31270.097*
H13C0.07110.48131.27060.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0483 (15)0.0563 (15)0.0600 (14)0.0042 (11)0.0104 (11)0.0056 (12)
O10.0766 (18)0.148 (3)0.1051 (19)0.0394 (16)0.0280 (15)0.0576 (18)
C10.0488 (17)0.0481 (17)0.0581 (17)0.0005 (13)0.0077 (14)0.0043 (14)
C20.063 (2)0.0501 (18)0.0582 (17)0.0022 (15)0.0170 (15)0.0019 (14)
C30.0561 (19)0.0445 (17)0.0564 (17)0.0048 (13)0.0049 (14)0.0052 (13)
C40.0492 (17)0.0371 (15)0.0555 (16)0.0001 (13)0.0094 (14)0.0048 (13)
C50.057 (2)0.0529 (18)0.0518 (16)0.0017 (14)0.0089 (14)0.0070 (13)
C60.0516 (19)0.0588 (19)0.0598 (18)0.0061 (14)0.0015 (14)0.0066 (15)
C70.058 (2)0.058 (2)0.0621 (18)0.0016 (15)0.0047 (15)0.0015 (15)
C80.058 (2)0.064 (2)0.0653 (19)0.0031 (16)0.0067 (16)0.0058 (16)
C90.054 (2)0.068 (2)0.0689 (19)0.0046 (16)0.0129 (16)0.0040 (16)
C100.064 (2)0.111 (3)0.077 (2)0.007 (2)0.0190 (17)0.019 (2)
C110.072 (2)0.125 (3)0.099 (3)0.000 (2)0.034 (2)0.017 (2)
C120.056 (2)0.075 (2)0.082 (2)0.0110 (17)0.0134 (17)0.0093 (18)
C130.067 (2)0.066 (2)0.0651 (19)0.0049 (16)0.0215 (15)0.0024 (16)
Geometric parameters (Å, º) top
N1—C41.368 (3)C7—H70.9300
N1—C121.447 (3)C8—C91.480 (4)
N1—C131.451 (4)C8—H80.9300
O1—C91.200 (3)C9—C101.469 (4)
C1—C61.385 (4)C10—C111.485 (4)
C1—C21.390 (4)C10—H10A0.9700
C1—C71.458 (4)C10—H10B0.9700
C2—C31.375 (4)C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.404 (3)C11—H11C0.9600
C3—H30.9300C12—H12A0.9600
C4—C51.391 (4)C12—H12B0.9600
C5—C61.370 (4)C12—H12C0.9600
C5—H50.9300C13—H13A0.9600
C6—H60.9300C13—H13B0.9600
C7—C81.302 (4)C13—H13C0.9600
C4—N1—C12120.6 (2)O1—C9—C10121.3 (3)
C4—N1—C13119.9 (2)O1—C9—C8122.6 (3)
C12—N1—C13117.0 (2)C10—C9—C8116.1 (3)
C6—C1—C2116.5 (3)C9—C10—C11116.9 (3)
C6—C1—C7120.2 (3)C9—C10—H10A108.1
C2—C1—C7123.2 (3)C11—C10—H10A108.1
C3—C2—C1122.2 (3)C9—C10—H10B108.1
C3—C2—H2118.9C11—C10—H10B108.1
C1—C2—H2118.9H10A—C10—H10B107.3
C2—C3—C4120.8 (3)C10—C11—H11A109.5
C2—C3—H3119.6C10—C11—H11B109.5
C4—C3—H3119.6H11A—C11—H11B109.5
N1—C4—C5122.4 (2)C10—C11—H11C109.5
N1—C4—C3120.9 (3)H11A—C11—H11C109.5
C5—C4—C3116.6 (3)H11B—C11—H11C109.5
C6—C5—C4121.7 (3)N1—C12—H12A109.5
C6—C5—H5119.1N1—C12—H12B109.5
C4—C5—H5119.1H12A—C12—H12B109.5
C5—C6—C1122.0 (3)N1—C12—H12C109.5
C5—C6—H6119.0H12A—C12—H12C109.5
C1—C6—H6119.0H12B—C12—H12C109.5
C8—C7—C1128.4 (3)N1—C13—H13A109.5
C8—C7—H7115.8N1—C13—H13B109.5
C1—C7—H7115.8H13A—C13—H13B109.5
C7—C8—C9123.0 (3)N1—C13—H13C109.5
C7—C8—H8118.5H13A—C13—H13C109.5
C9—C8—H8118.5H13B—C13—H13C109.5
C6—C1—C2—C33.0 (4)C4—C5—C6—C10.2 (4)
C7—C1—C2—C3176.3 (3)C2—C1—C6—C52.4 (4)
C1—C2—C3—C41.1 (4)C7—C1—C6—C5177.0 (3)
C12—N1—C4—C5166.5 (3)C6—C1—C7—C8177.9 (3)
C13—N1—C4—C54.9 (4)C2—C1—C7—C81.4 (5)
C12—N1—C4—C314.8 (4)C1—C7—C8—C9179.4 (3)
C13—N1—C4—C3176.4 (2)C7—C8—C9—O13.8 (5)
C2—C3—C4—N1179.8 (3)C7—C8—C9—C10176.6 (3)
C2—C3—C4—C51.4 (4)O1—C9—C10—C111.2 (5)
N1—C4—C5—C6179.1 (2)C8—C9—C10—C11179.3 (3)
C3—C4—C5—C62.1 (4)

Experimental details

Crystal data
Chemical formulaC13H17NO
Mr203.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6079 (14), 15.1331 (17), 6.2182 (6)
β (°) 100.036 (5)
V3)1168.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.37 × 0.33 × 0.19
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.974, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
12449, 2779, 1051
Rint0.062
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.234, 0.93
No. of reflections2779
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: APEXII (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant under the project strengthening the Materials Chemistry Laboratory at GC University, Lahore.

References

First citationArshad, M. N., Tahir, M. N., Asghar, M. N., Khan, I. U. & Ashfaq, M. (2008). Acta Cryst. E64, o1413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMukhtari, S., Mujeebur Rahman, V. P., Ansari, W. A., Lemiere, G., Groot, A. D., & Dommisse, R. (1999). Molecules, 4, 232–237.  Google Scholar
First citationNesterov, V. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2007). Acta Cryst. E63, o1785–o1787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds