

Acta Crystallographica Section E **Structure Reports** Online ISSN 1600-5368

An orthorhombic polymorph of 5-[(4methylphenyl)diazenyl]salicylaldehyde

Tushar S. Basu Baul,^a‡ Sajal Kundu,^a Hadi D. Arman^b and Edward R. T. Tiekink^c*

^aDepartment of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India, ^bDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 5 November 2009; accepted 6 November 2009

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.004 Å; R factor = 0.081; wR factor = 0.208; data-to-parameter ratio = 12.2.

The title compound, C₁₄H₁₂N₂O₂, is an orthorhombic polymorph of the previously reported monoclinic form [Bakir et al. (2005). Acta Cryst. E61, o1611-o1613]. The dihedral angle between the aromatic rings is $4.32(13)^\circ$. The molecular structures of the two polymorphs, including short intramolecular $O-H \cdots O$ hydrogen bonds between the the hydroxy and keto groups, are quite similar but their crystal packings are distinct. Unlike the monoclinic form, in which centrosymmetrically related hydroxy and keto groups form $\{\cdots H \cdots O\}_2$ synthons *via* weak $O - H \cdots O$ contacts, leading to dimeric aggregates, in the orthorhombic form, the hydrogen bonding between these groups leads to the formation of supramolecular chains orientated along the *a* axis.

Related literature

For the structure of the monoclinic polymorph, see: Bakir et al. (2005). For background and motivation for the synthesis of the title compound, see: Basu Baul et al. (2005). For the synthesis, see: Sarma et al. (1993).

 $M_r = 240.26$

Experimental

Crystal data $C_{14}H_{12}N_2O_2$

 $R[F^2 > 2\sigma(F^2)] = 0.081$ $wR(F^2) = 0.208$ S = 1.142032 reflections 167 parameters

Orthorhombic, Pbna

a = 6.016 (4) Å

b = 14.299 (9) Å

c = 26.878 (17) Å

V = 2312 (3) Å²

Data collection

Rigaku Saturn724 diffractometer

Absorption correction: none

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H10\cdots O2$	0.84	2.01	2.700 (3)	139
$O1-H10\cdots O2^{i}$	0.84	2.44	3.008 (3)	125

Symmetry code: (i) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

The financial support of the Department of Science & Technology, New Delhi, India (grant No. SR/S1/IC-03/2005, TSBB) and the University Grants Commission, New Delhi, India, through SAP-DSA (Phase-III), is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5215).

References

- Bakir, M., Harewood, G. R., Holder, A., Hassan, I., Dasgupta, T. P., Maragh, P. & Singh-Wilmot, M. (2005). Acta Cryst. E61, o1611-o1613.
- Basu Baul, T. S., Singh, K. S., Holčapek, M., Jirásko, R., Linden, A., Song, X., Zapata, A. & Eng, G. (2005). Appl. Organomet. Chem. 19, 935-944.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sarma, K., Basu Baul, T. S., Basaiawmoit, W. L. & Saran, R. (1993). Spectrochim. Acta Part A, 49, 1027.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Z = 8

Mo $K\alpha$ radiation

 $0.25 \times 0.18 \times 0.15 \ \mathrm{mm}$

2032 independent reflections

1774 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.09 \text{ mm}^{-1}$

T = 98 K

 $R_{\rm int} = 0.082$

1 restraint

 $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

‡ Additional correspondence author, e-mail: basubaul@hotmail.com.

¹²⁵⁸⁷ measured reflections Refinement

organic compounds

supporting information

Acta Cryst. (2009). E65, o3061 [doi:10.1107/S1600536809046868]

An orthorhombic polymorph of 5-[(4-methylphenyl)diazenyl]salicylaldehyde

Tushar S. Basu Baul, Sajal Kundu, Hadi D. Arman and Edward R. T. Tiekink

S1. Comment

The title compound, (I), was isolated during on-going studies into the biological activities of their organotin complexes (Basu Baul *et al.*, 2005). The structure of (I) represents an orthorhombic polymorph of a previously reported monoclinic form (Bakir *et al.*, 2005). The molecular structure of (I), Fig. 1, closely resembles that of the monoclinic form, with comparable geometric parameters being equal within experimental error. The overall molecule of (I) is planar as seen in the values of the C1/C2/C3/O2, C5/C4/N1/N2 and C9/C8/N2/N1 torsion angles of 0.9 (4), 0.7 (4) and -178.0 (2) °, respectively. In each of the polymorphs, a short intramolecular O–H…O hydrogen bond is formed between the hydroxyl and keto groups, Table 1. The key difference between the polymorphs rests with the nature of the weaker O–H…O intermolecular interactions formed between these groups. Thus, in the previously reported monoclinic form, the crystal structure comprises the packing of centrosymmetric dimers linked by a four-membered {…H…O}₂ synthon. By contrast, in (I) the intermolecular hydrogen bonding between these groups leads to 1-D supramolecular chains aligned along the a direction, Table 1 and Fig. 2. The crystal structure comprises packing of these chains as illustrated in Fig. 3.

S2. Experimental

Compound (I) was prepared by reacting *p*-tolyldiazonium chloride with *o*-hydroxybenzaldehyde using a previously reported method (Sarma *et al.*, 1993). Orange crystals were obtained by slow evaporation of a methanol solution of (I); m.pt. 421–423 K.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to $1.2-1.5U_{eq}(C)$. The O–bound H-atom was located in a difference Fourier map and was refined with an O–H restraint of 0.840 ± 0.001 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2

Supramolecular chain formation along the *a* axis in (I) mediated by O–H…O hydrogen bonds (orange dashed lines).

Figure 3

View in projection down the *a* axis of the crystal packing in (I), highlighting the stacking of supramolecular chains. The O–H…O hydrogen bonds are highlighted as orange dashed lines.

5-[(4-methylphenyl)diazenyl]salicylaldehyde

$C_{14}H_{12}N_2O_2$
$M_r = 240.26$
Orthorhombic, Pbna
Hall symbol: -P 2ac 2b
a = 6.016 (4) Å
<i>b</i> = 14.299 (9) Å
<i>c</i> = 26.878 (17) Å
$V = 2312 (3) Å^3$
Z = 8

F(000) = 1008 $D_x = 1.380 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8423 reflections $\theta = 3.0-40.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 98 KPrism, orange $0.25 \times 0.18 \times 0.15 \text{ mm}$ Data collection

Rigaku Saturn724	2032 independent reflections
diffractometer	1774 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{int} = 0.082$
Graphite monochromator	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$
Detector resolution: 28.5714 pixels mm ⁻¹	$h = -5 \rightarrow 7$
ω scans	$k = -17 \rightarrow 17$
12587 measured reflections	$l = -31 \rightarrow 31$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.081$	Hydrogen site location: inferred from
$wR(F^2) = 0.208$	neighbouring sites
S = 1.14	H-atom parameters constrained
2032 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0971P)^2 + 2.61P]$
167 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.40$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.32$ e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.5504 (3)	0.03566 (15)	0.16786 (7)	0.0290 (5)	
H1O	0.4957	0.0411	0.1965	0.043*	
O2	0.2044 (3)	0.07693 (15)	0.22794 (7)	0.0340 (6)	
N1	-0.0156 (4)	0.13491 (16)	0.01161 (7)	0.0245 (6)	
N2	0.0617 (4)	0.12120 (16)	-0.03149 (8)	0.0251 (6)	
C1	0.4095 (4)	0.0603 (2)	0.13084 (9)	0.0248 (6)	
C2	0.1931 (4)	0.09462 (19)	0.13980 (9)	0.0242 (6)	
C3	0.0583 (4)	0.12043 (19)	0.09890 (9)	0.0239 (6)	
H3	-0.0864	0.1446	0.1047	0.029*	
C4	0.1341 (4)	0.11101 (18)	0.05081 (9)	0.0226 (6)	
C5	0.3522 (5)	0.07589 (19)	0.04248 (9)	0.0250 (6)	
H5	0.4058	0.0698	0.0094	0.030*	
C6	0.4862 (4)	0.0508 (2)	0.08146 (9)	0.0252 (6)	
H6	0.6309	0.0269	0.0753	0.030*	
C7	0.1029 (5)	0.1000 (2)	0.18997 (10)	0.0285 (7)	
H7	-0.0444	0.1228	0.1938	0.034*	
C8	-0.0859 (4)	0.14457 (19)	-0.07115 (9)	0.0239 (6)	

C9	-0.0071 (5)	0.12717 (19)	-0.11890 (9)	0.0263 (7)	
H9	0.1367	0.1010	-0.1234	0.032*	
C10	-0.1380 (5)	0.1479 (2)	-0.16010 (10)	0.0276 (7)	
H10	-0.0824	0.1359	-0.1926	0.033*	
C11	-0.3501 (5)	0.18602 (19)	-0.15435 (9)	0.0265 (7)	
C12	-0.4272 (5)	0.20340 (19)	-0.10605 (9)	0.0262 (6)	
H12	-0.5709	0.2297	-0.1015	0.031*	
C13	-0.2985 (5)	0.18306 (19)	-0.06474 (10)	0.0256 (6)	
H13	-0.3537	0.1951	-0.0323	0.031*	
C14	-0.4928 (5)	0.2058 (2)	-0.19935 (10)	0.0341 (7)	
H14A	-0.4410	0.2631	-0.2156	0.051*	
H14B	-0.6477	0.2137	-0.1889	0.051*	
H14C	-0.4823	0.1533	-0.2227	0.051*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0230 (11)	0.0436 (13)	0.0203 (10)	0.0040 (9)	-0.0026 (7)	-0.0010 (8)
O2	0.0260 (11)	0.0533 (14)	0.0227 (10)	0.0007 (9)	-0.0016 (8)	0.0003 (9)
N1	0.0246 (12)	0.0289 (13)	0.0202 (12)	0.0002 (10)	-0.0018 (9)	0.0010 (9)
N2	0.0238 (12)	0.0293 (13)	0.0221 (12)	-0.0007 (10)	-0.0029 (10)	0.0001 (9)
C1	0.0214 (14)	0.0306 (15)	0.0224 (13)	-0.0030 (11)	-0.0023 (10)	-0.0018 (11)
C2	0.0223 (13)	0.0280 (15)	0.0222 (13)	-0.0001 (11)	0.0021 (11)	-0.0006 (10)
C3	0.0197 (13)	0.0282 (14)	0.0239 (14)	0.0017 (11)	-0.0011 (11)	-0.0012 (10)
C4	0.0212 (14)	0.0248 (14)	0.0217 (13)	-0.0024 (10)	-0.0033 (11)	0.0005 (10)
C5	0.0242 (14)	0.0306 (15)	0.0203 (12)	-0.0003 (11)	0.0014 (11)	-0.0021 (11)
C6	0.0191 (13)	0.0312 (15)	0.0252 (13)	0.0002 (11)	0.0008 (11)	-0.0021 (11)
C7	0.0240 (14)	0.0362 (16)	0.0255 (14)	0.0008 (12)	0.0011 (12)	-0.0004 (11)
C8	0.0231 (14)	0.0267 (15)	0.0219 (13)	-0.0015 (11)	-0.0026 (11)	0.0001 (10)
C9	0.0241 (14)	0.0298 (15)	0.0251 (14)	-0.0025 (11)	-0.0012 (11)	0.0007 (11)
C10	0.0273 (14)	0.0350 (16)	0.0204 (13)	-0.0023 (12)	0.0020 (11)	-0.0014 (11)
C11	0.0279 (15)	0.0258 (15)	0.0258 (14)	-0.0033 (11)	-0.0034 (12)	0.0009 (11)
C12	0.0223 (14)	0.0277 (15)	0.0285 (14)	-0.0005 (11)	-0.0004 (11)	0.0007 (11)
C13	0.0278 (15)	0.0256 (15)	0.0234 (13)	-0.0016 (11)	0.0002 (11)	0.0009 (10)
C14	0.0369 (16)	0.0407 (18)	0.0248 (14)	0.0037 (14)	-0.0051 (12)	0.0033 (12)

Geometric parameters (Å, °)

01—C1	1.353 (3)	С7—Н7	0.9500
01—H10	0.8400	C8—C9	1.391 (4)
O2—C7	1.234 (3)	C8—C13	1.403 (4)
N1—N2	1.264 (3)	C9—C10	1.391 (4)
N1-C4	1.428 (3)	С9—Н9	0.9500
N2—C8	1.427 (3)	C10—C11	1.396 (4)
C1—C6	1.411 (4)	C10—H10	0.9500
C1—C2	1.413 (4)	C11—C12	1.401 (4)
С2—С3	1.415 (4)	C11—C14	1.510 (4)
C2—C7	1.455 (4)	C12—C13	1.385 (4)

C3—C4	1.377 (4)	С12—Н12	0.9500
С3—Н3	0.9500	C13—H13	0.9500
C4—C5	1.423 (4)	C14—H14A	0.9800
C5—C6	1.370 (4)	C14—H14B	0.9800
С5—Н5	0.9500	C14—H14C	0.9800
С6—Н6	0.9500		
C1—O1—H1O	113.8	C9—C8—C13	119.6 (2)
N2—N1—C4	114.0 (2)	C9—C8—N2	115.8 (2)
N1—N2—C8	114.8 (2)	C13—C8—N2	124.6 (2)
O1—C1—C6	117.5 (2)	C8—C9—C10	120.2 (3)
O1—C1—C2	122.8 (2)	С8—С9—Н9	119.9
C6—C1—C2	119.7 (2)	С10—С9—Н9	119.9
C1—C2—C3	119.1 (2)	C9—C10—C11	120.8 (2)
C1—C2—C7	121.3 (2)	C9—C10—H10	119.6
C3—C2—C7	119.5 (2)	C11—C10—H10	119.6
C4—C3—C2	120.9 (2)	C10-C11-C12	118.3 (2)
С4—С3—Н3	119.5	C10-C11-C14	120.3 (2)
С2—С3—Н3	119.5	C12—C11—C14	121.4 (3)
C3—C4—C5	119.2 (2)	C13—C12—C11	121.4 (3)
C3—C4—N1	117.4 (2)	C13—C12—H12	119.3
C5-C4-N1	123.4 (2)	C11—C12—H12	119.3
C6—C5—C4	121.0 (2)	C12—C13—C8	119.6 (2)
С6—С5—Н5	119.5	С12—С13—Н13	120.2
С4—С5—Н5	119.5	C8—C13—H13	120.2
C5—C6—C1	120.1 (2)	C11—C14—H14A	109.5
С5—С6—Н6	119.9	C11—C14—H14B	109.5
С1—С6—Н6	119.9	H14A—C14—H14B	109.5
O2—C7—C2	124.6 (3)	C11—C14—H14C	109.5
O2—C7—H7	117.7	H14A—C14—H14C	109.5
С2—С7—Н7	117.7	H14B—C14—H14C	109.5
C4—N1—N2—C8	179.9 (2)	C2-C1-C6-C5	0.8 (4)
O1—C1—C2—C3	178.8 (2)	C1—C2—C7—O2	0.9 (5)
C6—C1—C2—C3	-1.1 (4)	C3—C2—C7—O2	178.1 (3)
O1—C1—C2—C7	-4.0 (4)	N1—N2—C8—C9	-178.0 (2)
C6—C1—C2—C7	176.1 (3)	N1—N2—C8—C13	2.2 (4)
C1—C2—C3—C4	1.1 (4)	C13—C8—C9—C10	0.1 (4)
C7—C2—C3—C4	-176.2 (3)	N2-C8-C9-C10	-179.8 (2)
C2—C3—C4—C5	-0.8(4)	C8—C9—C10—C11	-0.2(4)
C2—C3—C4—N1	177.4 (2)	C9—C10—C11—C12	0.3 (4)
N2—N1—C4—C3	-177.4 (2)	C9—C10—C11—C14	-178.4 (3)
N2—N1—C4—C5	0.7 (4)	C10-C11-C12-C13	-0.4 (4)
C3—C4—C5—C6	0.6 (4)	C14—C11—C12—C13	178.3 (3)
N1—C4—C5—C6	-177.6 (3)	C11—C12—C13—C8	0.2 (4)
C4—C5—C6—C1	-0.6 (4)	C9—C8—C13—C12	-0.1 (4)
O1—C1—C6—C5	-179.0 (2)	N2-C8-C13-C12	179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H10····O2	0.84	2.01	2.700 (3)	139
O1—H10···O2 ⁱ	0.84	2.44	3.008 (3)	125

Symmetry code: (i) x+1/2, y, -z+1/2.