metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,1′-Bis(di­phenyl­phosphino)ferrocene-κ2P:P′]bis­­{[(Z)-O-iso­propyl-N-(4-methyl­phen­yl)thio­carbamato-κS]gold(I)}

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 November 2009; accepted 11 November 2009; online 18 November 2009)

In the title compound, [Au2Fe(C11H14NOS)2(C17H14P)2], the FeII atom is located on a crystallographic centre of inversion. For the AuI atom, the deviation from linearity defined by its S,P-donor set [S—Au—P = 178.17 (8) Å] is due to an intra­molecular Au⋯O contact [3.079 (4) Å]. In the crystal, supra­molecular chains mediated by C—H⋯N inter­actions are formed, which run parallel to [001].

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]). For a related structure, see Ho & Tiekink (2009[Ho, S. Y. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1466-m1467.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Fe(C11H14NOS)2(C17H14P)2]

  • Mr = 1364.87

  • Triclinic, [P \overline 1]

  • a = 8.1631 (9) Å

  • b = 13.4959 (14) Å

  • c = 13.5154 (14) Å

  • α = 107.440 (2)°

  • β = 97.401 (2)°

  • γ = 106.366 (2)°

  • V = 1325.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.97 mm−1

  • T = 223 K

  • 0.21 × 0.07 × 0.04 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.629, Tmax = 1

  • 7710 measured reflections

  • 4651 independent reflections

  • 3790 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.088

  • S = 0.98

  • 4651 reflections

  • 305 parameters

  • H-atom parameters constrained

  • Δρmax = 1.74 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Selected bond lengths (Å)

Au—S1 2.2883 (19)
Au—P1 2.2520 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯N1i 0.94 2.45 3.370 (11) 167
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

As a part of systematic studies of phosphinegold(I) thiocarbamides (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), the title compound, dppf{Au[SC(O-iPr)NC6H4Me-p]}2, was synthesized, (I); dppf is (Ph2PC5H4)2Fe. The dinuclear molecule has crystallographic symmetry with the Fe atom lying on an inversion centre, Fig. 1.

The gold atom exists in the expected linear geometry defined by a SP donor set, Table 1, and the deviation from linearity [S1–Au–P1 is 178.17 (8) Å] is ascribed to the close approach of the O1 atom, Au···O = 3.079 (4) Å. The anion, with a Z configuration about the C1N1 bond, shows the expected characteristics. The magnitudes of C1—S1 and C1N1 of 1.753 (7) and 1.253 (9) Å, respectively, confirm that the anion is coordinating as a thiolate. The overall conformation of the molecule is "open" in that the thiocarbamate ligands are lying on either side of the molecule. This contrasts the situation in each of dppf{Au[SC(OR)NC6H4NO2-p]}2, for R = Me (Ho et al., 2006) and iPr (Ho & Tiekink, 2009), whereby the molecule has a U-shaped conformation allowing for the formation of intramolecular Au···Au interactions.

In the crystal structure of (I), supramolecular chains are formed down the c axis owing to the presence of C–H···N interactions, Table 2 and Fig. 2.

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993). For a related structure, see Ho & Tiekink (2009).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of dppf(AuCl)2 and (iPr)OC(S)N(H)C6H4Me-p in the presence of base (Hall et al., 1993).

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.74 and 0.93 e Å-3, respectively, were located 1.03 Å and 1.02 Å from the Au atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the dinuclear complex (I) showing displacement ellipsoids at the 50% probability level. The molecule is located about a centre of inversion and unlabelled atoms are related by the symmetry operation 1 - x, 1 - y, -z.
[Figure 2] Fig. 2. Supramolecular chain in (I) mediated by C—H···N contacts (blue dashed lines). Colour code: Au, orange; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.
[µ-1,1'-Bis(diphenylphosphino)ferrocene- κ2P:P']bis{[(Z)- O-isopropyl-N-(4-methylphenyl)thiocarbamato-κS]gold(I)} top
Crystal data top
[Au2Fe(C11H14NOS)2(C17H14P)2]Z = 1
Mr = 1364.87F(000) = 668
Triclinic, P1Dx = 1.710 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.1631 (9) ÅCell parameters from 2346 reflections
b = 13.4959 (14) Åθ = 2.7–30.0°
c = 13.5154 (14) ŵ = 5.97 mm1
α = 107.440 (2)°T = 223 K
β = 97.401 (2)°Block, orange
γ = 106.366 (2)°0.21 × 0.07 × 0.04 mm
V = 1325.5 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
4651 independent reflections
Radiation source: fine-focus sealed tube3790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 95
Tmin = 0.629, Tmax = 1k = 1615
7710 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0429P)2]
where P = (Fo2 + 2Fc2)/3
4651 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 1.74 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
[Au2Fe(C11H14NOS)2(C17H14P)2]γ = 106.366 (2)°
Mr = 1364.87V = 1325.5 (2) Å3
Triclinic, P1Z = 1
a = 8.1631 (9) ÅMo Kα radiation
b = 13.4959 (14) ŵ = 5.97 mm1
c = 13.5154 (14) ÅT = 223 K
α = 107.440 (2)°0.21 × 0.07 × 0.04 mm
β = 97.401 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4651 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3790 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 1Rint = 0.036
7710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.98Δρmax = 1.74 e Å3
4651 reflectionsΔρmin = 0.93 e Å3
305 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.13463 (4)0.49437 (2)0.20439 (2)0.03125 (11)
Fe0.50000.50000.00000.0270 (3)
S10.1355 (3)0.63009 (17)0.35458 (14)0.0434 (5)
P10.1284 (2)0.35677 (14)0.05834 (13)0.0266 (4)
O10.4456 (6)0.6118 (4)0.4008 (3)0.0351 (11)
N10.3945 (9)0.7445 (5)0.5308 (5)0.0457 (17)
C10.3418 (10)0.6707 (6)0.4401 (6)0.0382 (18)
C20.2892 (11)0.8073 (7)0.5704 (6)0.046 (2)
C30.2959 (12)0.8999 (7)0.5460 (7)0.057 (2)
H30.36470.91850.49930.069*
C40.2016 (12)0.9663 (7)0.5898 (7)0.059 (2)
H40.20361.02700.56890.071*
C50.1061 (12)0.9464 (8)0.6622 (6)0.056 (2)
C60.1049 (13)0.8551 (9)0.6871 (6)0.062 (3)
H60.04060.83810.73630.075*
C70.1941 (12)0.7875 (8)0.6427 (7)0.056 (2)
H70.18970.72590.66250.068*
C80.0014 (15)1.0160 (9)0.7055 (8)0.087 (4)
H8A0.10980.99240.65480.130*
H8B0.06571.09260.71780.130*
H8C0.02011.00840.77230.130*
C90.6271 (10)0.6486 (7)0.4650 (6)0.046 (2)
H90.62560.66770.54140.055*
C100.6848 (11)0.5484 (7)0.4295 (6)0.047 (2)
H10A0.60750.48800.44410.071*
H10B0.80420.56660.46820.071*
H10C0.67940.52670.35360.071*
C110.7391 (11)0.7471 (7)0.4477 (7)0.060 (2)
H11A0.69550.80790.47260.091*
H11B0.73570.72980.37230.091*
H11C0.85900.76800.48700.091*
C120.2458 (8)0.4006 (5)0.0322 (5)0.0263 (15)
C130.2562 (9)0.5014 (6)0.0501 (5)0.0329 (16)
H130.20790.55350.01450.039*
C140.3500 (10)0.5101 (7)0.1288 (6)0.044 (2)
H140.37470.56800.15580.053*
C150.4004 (10)0.4153 (7)0.1600 (5)0.045 (2)
H150.46550.39960.21160.054*
C160.3375 (9)0.3480 (6)0.1013 (5)0.0354 (17)
H160.35340.28040.10700.043*
C170.0903 (8)0.2718 (5)0.0236 (5)0.0267 (15)
C180.2168 (10)0.2284 (6)0.0247 (6)0.0423 (19)
H180.18930.24310.09850.051*
C190.3841 (11)0.1631 (7)0.0356 (8)0.058 (2)
H190.46950.13170.00300.070*
C200.4260 (11)0.1439 (7)0.1435 (8)0.057 (2)
H200.53990.09970.18430.068*
C210.3025 (11)0.1890 (6)0.1906 (7)0.049 (2)
H210.33230.17670.26380.059*
C220.1347 (10)0.2522 (6)0.1327 (6)0.0384 (18)
H220.04990.28220.16630.046*
C230.2152 (8)0.2599 (5)0.0958 (5)0.0294 (15)
C240.3196 (10)0.2918 (7)0.1944 (6)0.0423 (19)
H240.35070.36480.24160.051*
C250.3806 (12)0.2174 (8)0.2258 (7)0.059 (2)
H250.45120.23980.29460.070*
C260.3391 (12)0.1131 (8)0.1582 (7)0.056 (2)
H260.38400.06390.17970.067*
C270.2318 (10)0.0772 (6)0.0580 (7)0.048 (2)
H270.20060.00360.01190.057*
C280.1709 (9)0.1516 (6)0.0263 (6)0.0400 (18)
H280.09930.12890.04220.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02798 (16)0.03521 (17)0.02566 (15)0.00940 (12)0.00453 (10)0.00587 (11)
Fe0.0229 (7)0.0322 (8)0.0227 (6)0.0055 (6)0.0028 (5)0.0098 (6)
S10.0352 (11)0.0527 (12)0.0320 (9)0.0184 (10)0.0026 (8)0.0004 (9)
P10.0224 (9)0.0272 (9)0.0276 (9)0.0064 (8)0.0042 (7)0.0086 (8)
O10.028 (3)0.042 (3)0.029 (2)0.014 (2)0.000 (2)0.005 (2)
N10.046 (4)0.048 (4)0.033 (3)0.020 (3)0.002 (3)0.003 (3)
C10.040 (4)0.035 (4)0.033 (4)0.003 (4)0.003 (3)0.015 (4)
C20.048 (5)0.054 (5)0.025 (4)0.019 (4)0.000 (4)0.003 (4)
C30.064 (6)0.051 (5)0.056 (5)0.016 (5)0.028 (5)0.016 (5)
C40.065 (6)0.040 (5)0.063 (6)0.016 (5)0.013 (5)0.008 (4)
C50.054 (6)0.068 (6)0.027 (4)0.018 (5)0.002 (4)0.005 (4)
C60.063 (6)0.092 (8)0.034 (4)0.027 (6)0.015 (4)0.023 (5)
C70.053 (5)0.075 (6)0.050 (5)0.032 (5)0.005 (4)0.028 (5)
C80.086 (8)0.099 (8)0.053 (6)0.048 (7)0.003 (6)0.015 (6)
C90.036 (4)0.058 (5)0.031 (4)0.008 (4)0.002 (3)0.011 (4)
C100.044 (5)0.070 (6)0.034 (4)0.027 (4)0.007 (4)0.021 (4)
C110.043 (5)0.051 (5)0.064 (6)0.001 (4)0.001 (4)0.009 (5)
C120.023 (3)0.025 (3)0.027 (3)0.006 (3)0.001 (3)0.007 (3)
C130.025 (4)0.037 (4)0.035 (4)0.010 (3)0.002 (3)0.016 (3)
C140.043 (5)0.055 (5)0.032 (4)0.007 (4)0.002 (4)0.023 (4)
C150.037 (4)0.064 (6)0.018 (3)0.002 (4)0.005 (3)0.007 (4)
C160.032 (4)0.037 (4)0.030 (4)0.009 (3)0.005 (3)0.006 (3)
C170.026 (4)0.016 (3)0.037 (4)0.007 (3)0.003 (3)0.009 (3)
C180.036 (4)0.044 (5)0.053 (5)0.014 (4)0.019 (4)0.022 (4)
C190.036 (5)0.044 (5)0.104 (8)0.011 (4)0.029 (5)0.035 (5)
C200.025 (4)0.042 (5)0.088 (7)0.006 (4)0.009 (5)0.016 (5)
C210.036 (5)0.045 (5)0.049 (5)0.009 (4)0.011 (4)0.006 (4)
C220.036 (4)0.038 (4)0.037 (4)0.012 (4)0.006 (3)0.009 (3)
C230.018 (3)0.028 (4)0.035 (4)0.002 (3)0.007 (3)0.011 (3)
C240.041 (5)0.054 (5)0.036 (4)0.021 (4)0.007 (3)0.019 (4)
C250.072 (6)0.087 (7)0.041 (5)0.051 (6)0.015 (4)0.032 (5)
C260.066 (6)0.070 (6)0.072 (6)0.045 (5)0.037 (5)0.052 (6)
C270.040 (5)0.031 (4)0.074 (6)0.004 (4)0.019 (4)0.026 (4)
C280.025 (4)0.037 (4)0.052 (5)0.004 (3)0.003 (3)0.017 (4)
Geometric parameters (Å, º) top
Au—S12.2883 (19)C10—H10A0.9700
Au—P12.2520 (17)C10—H10B0.9700
Fe—C13i2.025 (6)C10—H10C0.9700
Fe—C132.025 (6)C11—H11A0.9700
Fe—C122.036 (6)C11—H11B0.9700
Fe—C12i2.036 (6)C11—H11C0.9700
Fe—C162.039 (7)C12—C161.420 (9)
Fe—C16i2.039 (7)C12—C131.433 (9)
Fe—C152.046 (7)C13—C141.403 (10)
Fe—C15i2.046 (7)C13—H130.9400
Fe—C14i2.059 (7)C14—C151.416 (11)
Fe—C142.059 (7)C14—H140.9400
S1—C11.753 (7)C15—C161.411 (10)
P1—C121.784 (7)C15—H150.9400
P1—C231.814 (7)C16—H160.9400
P1—C171.818 (6)C17—C181.377 (10)
O1—C11.370 (9)C17—C221.396 (9)
O1—C91.479 (8)C18—C191.382 (11)
N1—C11.253 (9)C18—H180.9400
N1—C21.415 (10)C19—C201.381 (13)
C2—C71.365 (12)C19—H190.9400
C2—C31.373 (11)C20—C211.358 (12)
C3—C41.390 (12)C20—H200.9400
C3—H30.9400C21—C221.371 (10)
C4—C51.369 (12)C21—H210.9400
C4—H40.9400C22—H220.9400
C5—C61.369 (13)C23—C241.358 (9)
C5—C81.485 (12)C23—C281.393 (10)
C6—C71.372 (12)C24—C251.386 (10)
C6—H60.9400C24—H240.9400
C7—H70.9400C25—C261.346 (12)
C8—H8A0.9700C25—H250.9400
C8—H8B0.9700C26—C271.378 (12)
C8—H8C0.9700C26—H260.9400
C9—C111.488 (11)C27—C281.387 (10)
C9—C101.519 (10)C27—H270.9400
C9—H90.9900C28—H280.9400
P1—Au—S1178.17 (8)O1—C9—C10104.7 (6)
C13i—Fe—C13180.0C11—C9—C10113.9 (7)
C13i—Fe—C12138.7 (3)O1—C9—H9109.3
C13—Fe—C1241.3 (3)C11—C9—H9109.3
C13i—Fe—C12i41.3 (3)C10—C9—H9109.3
C13—Fe—C12i138.7 (3)C9—C10—H10A109.5
C12—Fe—C12i180.0C9—C10—H10B109.5
C13i—Fe—C16111.4 (3)H10A—C10—H10B109.5
C13—Fe—C1668.6 (3)C9—C10—H10C109.5
C12—Fe—C1640.8 (3)H10A—C10—H10C109.5
C12i—Fe—C16139.2 (3)H10B—C10—H10C109.5
C13i—Fe—C16i68.6 (3)C9—C11—H11A109.5
C13—Fe—C16i111.4 (3)C9—C11—H11B109.5
C12—Fe—C16i139.2 (3)H11A—C11—H11B109.5
C12i—Fe—C16i40.8 (3)C9—C11—H11C109.5
C16—Fe—C16i180.0 (4)H11A—C11—H11C109.5
C13i—Fe—C15112.4 (3)H11B—C11—H11C109.5
C13—Fe—C1567.6 (3)C16—C12—C13106.7 (6)
C12—Fe—C1568.2 (3)C16—C12—P1130.5 (5)
C12i—Fe—C15111.8 (3)C13—C12—P1122.8 (5)
C16—Fe—C1540.4 (3)C16—C12—Fe69.7 (4)
C16i—Fe—C15139.6 (3)C13—C12—Fe68.9 (4)
C13i—Fe—C15i67.6 (3)P1—C12—Fe127.9 (3)
C13—Fe—C15i112.4 (3)C14—C13—C12109.3 (7)
C12—Fe—C15i111.8 (3)C14—C13—Fe71.2 (4)
C12i—Fe—C15i68.2 (3)C12—C13—Fe69.7 (4)
C16—Fe—C15i139.6 (3)C14—C13—H13125.4
C16i—Fe—C15i40.4 (3)C12—C13—H13125.4
C15—Fe—C15i180.0 (2)Fe—C13—H13125.3
C13i—Fe—C14i40.2 (3)C13—C14—C15107.0 (7)
C13—Fe—C14i139.8 (3)C13—C14—Fe68.6 (4)
C12—Fe—C14i111.2 (3)C15—C14—Fe69.3 (4)
C12i—Fe—C14i68.8 (3)C13—C14—H14126.5
C16—Fe—C14i111.6 (3)C15—C14—H14126.5
C16i—Fe—C14i68.4 (3)Fe—C14—H14127.1
C15—Fe—C14i139.6 (3)C16—C15—C14109.2 (7)
C15i—Fe—C14i40.4 (3)C16—C15—Fe69.5 (4)
C13i—Fe—C14139.8 (3)C14—C15—Fe70.3 (4)
C13—Fe—C1440.2 (3)C16—C15—H15125.4
C12—Fe—C1468.8 (3)C14—C15—H15125.4
C12i—Fe—C14111.2 (3)Fe—C15—H15126.3
C16—Fe—C1468.4 (3)C15—C16—C12107.9 (7)
C16i—Fe—C14111.6 (3)C15—C16—Fe70.1 (4)
C15—Fe—C1440.4 (3)C12—C16—Fe69.5 (4)
C15i—Fe—C14139.6 (3)C15—C16—H16126.0
C14i—Fe—C14180.000 (1)C12—C16—H16126.0
C1—S1—Au105.7 (3)Fe—C16—H16126.0
C12—P1—C23108.0 (3)C18—C17—C22119.3 (7)
C12—P1—C17104.2 (3)C18—C17—P1118.6 (5)
C23—P1—C17104.0 (3)C22—C17—P1122.1 (6)
C12—P1—Au114.8 (2)C17—C18—C19119.9 (8)
C23—P1—Au110.6 (2)C17—C18—H18120.0
C17—P1—Au114.5 (2)C19—C18—H18120.0
C1—O1—C9116.5 (5)C20—C19—C18120.1 (8)
C1—N1—C2120.7 (7)C20—C19—H19120.0
N1—C1—O1120.6 (7)C18—C19—H19120.0
N1—C1—S1125.4 (6)C21—C20—C19120.0 (8)
O1—C1—S1114.0 (5)C21—C20—H20120.0
C7—C2—C3117.1 (8)C19—C20—H20120.0
C7—C2—N1122.6 (8)C20—C21—C22120.8 (8)
C3—C2—N1119.9 (8)C20—C21—H21119.6
C2—C3—C4120.5 (9)C22—C21—H21119.6
C2—C3—H3119.7C21—C22—C17119.8 (8)
C4—C3—H3119.7C21—C22—H22120.1
C5—C4—C3122.4 (9)C17—C22—H22120.1
C5—C4—H4118.8C24—C23—C28119.2 (7)
C3—C4—H4118.8C24—C23—P1119.8 (5)
C6—C5—C4115.9 (9)C28—C23—P1121.0 (5)
C6—C5—C8122.3 (10)C23—C24—C25120.4 (8)
C4—C5—C8121.7 (10)C23—C24—H24119.8
C5—C6—C7122.3 (9)C25—C24—H24119.8
C5—C6—H6118.8C26—C25—C24120.2 (8)
C7—C6—H6118.8C26—C25—H25119.9
C2—C7—C6121.7 (9)C24—C25—H25119.9
C2—C7—H7119.1C25—C26—C27121.1 (7)
C6—C7—H7119.1C25—C26—H26119.5
C5—C8—H8A109.5C27—C26—H26119.5
C5—C8—H8B109.5C26—C27—C28118.7 (8)
H8A—C8—H8B109.5C26—C27—H27120.6
C5—C8—H8C109.5C28—C27—H27120.6
H8A—C8—H8C109.5C27—C28—C23120.3 (7)
H8B—C8—H8C109.5C27—C28—H28119.9
O1—C9—C11110.2 (6)C23—C28—H28119.9
C2—N1—C1—O1178.4 (7)C16—Fe—C14—C1381.9 (5)
C2—N1—C1—S13.5 (11)C16i—Fe—C14—C1398.1 (5)
C9—O1—C1—N16.9 (10)C15—Fe—C14—C13118.9 (6)
C9—O1—C1—S1174.8 (5)C15i—Fe—C14—C1361.1 (6)
Au—S1—C1—N1179.4 (6)C13i—Fe—C14—C1561.1 (6)
Au—S1—C1—O12.4 (6)C13—Fe—C14—C15118.9 (6)
C1—N1—C2—C7101.8 (9)C12—Fe—C14—C1580.9 (5)
C1—N1—C2—C385.8 (10)C12i—Fe—C14—C1599.1 (5)
C7—C2—C3—C43.1 (13)C16—Fe—C14—C1537.0 (4)
N1—C2—C3—C4175.9 (7)C16i—Fe—C14—C15143.0 (4)
C2—C3—C4—C53.3 (14)C15i—Fe—C14—C15180.0
C3—C4—C5—C61.7 (13)C13—C14—C15—C160.3 (8)
C3—C4—C5—C8178.0 (9)Fe—C14—C15—C1658.8 (5)
C4—C5—C6—C70.2 (13)C13—C14—C15—Fe58.5 (5)
C8—C5—C6—C7176.4 (8)C13i—Fe—C15—C1697.3 (5)
C3—C2—C7—C61.7 (12)C13—Fe—C15—C1682.7 (5)
N1—C2—C7—C6174.3 (8)C12—Fe—C15—C1638.0 (4)
C5—C6—C7—C20.3 (14)C12i—Fe—C15—C16142.0 (4)
C1—O1—C9—C1178.4 (8)C14i—Fe—C15—C1659.6 (6)
C1—O1—C9—C10158.6 (6)C14—Fe—C15—C16120.4 (6)
C23—P1—C12—C1624.5 (7)C13i—Fe—C15—C14142.3 (4)
C17—P1—C12—C1685.7 (6)C13—Fe—C15—C1437.7 (4)
Au—P1—C12—C16148.3 (5)C12—Fe—C15—C1482.4 (5)
C23—P1—C12—C13158.2 (5)C12i—Fe—C15—C1497.6 (5)
C17—P1—C12—C1391.7 (5)C16—Fe—C15—C14120.4 (6)
Au—P1—C12—C1334.4 (6)C16i—Fe—C15—C1459.6 (6)
C23—P1—C12—Fe70.5 (5)C14—C15—C16—C120.1 (8)
C17—P1—C12—Fe179.3 (4)Fe—C15—C16—C1259.4 (5)
Au—P1—C12—Fe53.3 (4)C14—C15—C16—Fe59.3 (5)
C13i—Fe—C12—C1662.0 (6)C13—C12—C16—C150.5 (7)
C13—Fe—C12—C16118.0 (6)P1—C12—C16—C15177.2 (5)
C16i—Fe—C12—C16180.0Fe—C12—C16—C1559.8 (5)
C15—Fe—C12—C1637.6 (4)C13—C12—C16—Fe59.3 (4)
C15i—Fe—C12—C16142.4 (4)P1—C12—C16—Fe123.0 (6)
C14i—Fe—C12—C1698.9 (4)C13i—Fe—C16—C1599.8 (5)
C14—Fe—C12—C1681.1 (4)C13—Fe—C16—C1580.2 (5)
C13i—Fe—C12—C13180.0C12—Fe—C16—C15119.0 (6)
C16—Fe—C12—C13118.0 (6)C12i—Fe—C16—C1561.0 (6)
C16i—Fe—C12—C1362.0 (6)C14i—Fe—C16—C15143.1 (5)
C15—Fe—C12—C1380.4 (4)C14—Fe—C16—C1536.9 (5)
C15i—Fe—C12—C1399.6 (4)C13i—Fe—C16—C12141.2 (4)
C14i—Fe—C12—C13143.1 (4)C13—Fe—C16—C1238.8 (4)
C14—Fe—C12—C1336.9 (4)C12i—Fe—C16—C12180.0
C13i—Fe—C12—P164.2 (6)C15—Fe—C16—C12119.0 (6)
C13—Fe—C12—P1115.8 (6)C15i—Fe—C16—C1261.0 (6)
C16—Fe—C12—P1126.1 (6)C14i—Fe—C16—C1297.9 (4)
C16i—Fe—C12—P153.9 (6)C14—Fe—C16—C1282.1 (4)
C15—Fe—C12—P1163.8 (5)C12—P1—C17—C18177.4 (5)
C15i—Fe—C12—P116.2 (5)C23—P1—C17—C1869.6 (6)
C14i—Fe—C12—P127.3 (5)Au—P1—C17—C1851.2 (6)
C14—Fe—C12—P1152.7 (5)C12—P1—C17—C220.7 (6)
C16—C12—C13—C140.7 (7)C23—P1—C17—C22112.3 (6)
P1—C12—C13—C14177.2 (5)Au—P1—C17—C22126.9 (5)
Fe—C12—C13—C1460.5 (5)C22—C17—C18—C192.1 (10)
C16—C12—C13—Fe59.8 (4)P1—C17—C18—C19179.7 (6)
P1—C12—C13—Fe122.3 (5)C17—C18—C19—C201.8 (12)
C12—Fe—C13—C14119.8 (6)C18—C19—C20—C210.2 (13)
C12i—Fe—C13—C1460.2 (6)C19—C20—C21—C221.1 (12)
C16—Fe—C13—C1481.5 (5)C20—C21—C22—C170.8 (12)
C16i—Fe—C13—C1498.5 (5)C18—C17—C22—C210.8 (10)
C15—Fe—C13—C1437.8 (5)P1—C17—C22—C21178.9 (6)
C15i—Fe—C13—C14142.2 (5)C12—P1—C23—C24106.1 (6)
C14i—Fe—C13—C14180.0C17—P1—C23—C24143.6 (6)
C12i—Fe—C13—C12180.0Au—P1—C23—C2420.2 (6)
C16—Fe—C13—C1238.3 (4)C12—P1—C23—C2876.4 (6)
C16i—Fe—C13—C12141.7 (4)C17—P1—C23—C2833.9 (7)
C15—Fe—C13—C1282.0 (4)Au—P1—C23—C28157.3 (5)
C15i—Fe—C13—C1298.0 (4)C28—C23—C24—C250.3 (12)
C14i—Fe—C13—C1260.2 (6)P1—C23—C24—C25177.2 (6)
C14—Fe—C13—C12119.8 (6)C23—C24—C25—C261.0 (13)
C12—C13—C14—C150.6 (7)C24—C25—C26—C271.8 (14)
Fe—C13—C14—C1559.0 (5)C25—C26—C27—C281.9 (13)
C12—C13—C14—Fe59.6 (4)C26—C27—C28—C231.2 (12)
C13i—Fe—C14—C13180.0C24—C23—C28—C270.4 (11)
C12—Fe—C14—C1337.9 (4)P1—C23—C28—C27177.0 (6)
C12i—Fe—C14—C13142.1 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···N1ii0.942.453.370 (11)167
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Au2Fe(C11H14NOS)2(C17H14P)2]
Mr1364.87
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)8.1631 (9), 13.4959 (14), 13.5154 (14)
α, β, γ (°)107.440 (2), 97.401 (2), 106.366 (2)
V3)1325.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)5.97
Crystal size (mm)0.21 × 0.07 × 0.04
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.629, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
7710, 4651, 3790
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.088, 0.98
No. of reflections4651
No. of parameters305
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.74, 0.93

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Au—S12.2883 (19)Au—P12.2520 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···N1i0.942.453.370 (11)167
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1466–m1467.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds