metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2-aminopyrazine- κN^1)tetraaguacadmium(II) bis(perchlorate)-2-aminopyrazine (1/4)

Xiao-Li Cheng,^a Shan Gao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 14 November 2009; accepted 14 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.072; data-to-parameter ratio = 14.7.

In the title compound, $[Cd(C_4H_5N_3)_2(H_2O)_4](ClO_4)_2$. $4C_4H_5N_3$, the Cd^{II} atom (site symmetry 1) is coordinated by two N-heterocycles and four water molecules, resulting in a distorted trans-CdN₂O₄ octahedral geometry for the metal. In the crystal, the cation, anion and free N-heterocycle molecules are linked by N-H···N, N-H···O, O-H···N and O- $H \cdots O$ hydrogen bonds, forming a three-dimensional network.

Related literature

For the cadmium nitrate adduct of 2-aminopyrazine, see: Tai et al. (2008).

Experimental

Crystal data $[Cd(C_4H_5N_3)_2(H_2O)_4](ClO_4)_2$. $4C_4H_5N_3$ M = 954.02Monoclinic, $P2_1/c$ a = 8.8912 (2) Å b = 23.2402 (4) Å c = 9.3689 (2) Å

 $\beta = 96.4263 \ (7)^{\circ}$ V = 1923.76 (7) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.79 \text{ mm}^{-1}$ T = 293 K $0.18 \times 0.15 \times 0.15 \mbox{ mm}$ Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.871, \ \tilde{T}_{\max} = 0.891$

Refinement

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.58 \text{ e} \text{ Å}^{-3}$

18645 measured reflections

 $R_{\rm int} = 0.024$

4393 independent reflections

3982 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Cd1-O1W	2.282 (1)	Cd1-N1	2.323 (1)
Cd1 - O2W	2.367 (1)		

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1w-H11···N4	0.84 (1)	1.92 (1)	2.758 (2)	171 (3)
$O1w-H12\cdots N6^{i}$	0.84 (1)	2.24 (1)	3.059 (3)	165 (2)
O2w−H21···N7	0.84(1)	1.92 (1)	2.756 (2)	178 (3)
O2w−H22···O1	0.84 (1)	1.98 (1)	2.806 (2)	167 (3)
$N3-H31\cdots O2w^{ii}$	0.85(1)	2.28 (1)	3.070 (2)	154 (2)
$N3 - H32 \cdot \cdot \cdot N5^{iii}$	0.85 (1)	2.28 (1)	3.127 (2)	175 (2)
N6-H61···N2 ⁱⁱⁱ	0.85(1)	2.23 (1)	3.071 (2)	173 (2)
$N6-H62 \cdot \cdot \cdot O2^{i}$	0.85(1)	2.35 (1)	3.140 (2)	155 (2)
N9-H91···O3 ^{iv}	0.85 (1)	2.20 (1)	3.009 (4)	159 (3)
N9-H92···O4	0.85(1)	2.41(2)	3.073 (3)	135 (3)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z; (iv) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the Key Project of Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5230).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Tai, X.-S., Feng, Y.-M. & Wang, L.-T. (2008). Acta Cryst. E64, m537. Westrip, S. P. (2009). publCIF. In preparation.

m1634 Cheng et al.

supporting information

Acta Cryst. (2009). E65, m1634 [doi:10.1107/S1600536809048387]

Bis(2-aminopyrazine- κN^1)tetraaquacadmium(II) bis(perchlorate)–2-aminopyrazine (1/4)

Xiao-Li Cheng, Shan Gao and Seik Weng Ng

S1. Experimental

To an aqueous solution of 2-aminopyrimidine (0.19 g, 2 mmol) was added cadmium perchlorate hydrate (0.662 g, 2 mmol). Colorless prisms of (I) separated from the solution after a few days.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$. The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H = O–H = 0.85±0.01 Å; their U_{iso} values were refined.

Figure 1

The molecular structure of (I) shown at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Unlabelled atoms are generated by the symmetry operation (1-x, 1-y, 1-z).

Bis(2-aminopyrazine- κN^1)tetraaquacadmium(II) bis(perchlorate)–2-aminopyrazine (1/4)

F(000) = 972

 $\theta = 3.0 - 27.5^{\circ}$

 $\mu = 0.79 \text{ mm}^{-1}$ T = 293 K

Prism, colorless

 $0.18 \times 0.15 \times 0.15 \text{ mm}$

 $D_{\rm x} = 1.647 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 16676 reflections

Crystal data

 $[Cd(C_4H_5N_3)_2(H_2O)_4](ClO_4)_2 \cdot 4C_4H_5N_3$ $M_r = 954.02$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.8912 (2) Å b = 23.2402 (4) Å c = 9.3689 (2) Å $\beta = 96.4263$ (7)° V = 1923.76 (7) Å³ Z = 2

Data collection

Rigaku R-AXIS RAPID IP	18645 measured reflections
diffractometer	4393 independent reflections
Radiation source: fine-focus sealed tube	3982 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
ω scan	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(ABSCOR; Higashi, 1995)	$k = -30 \rightarrow 30$
$T_{\min} = 0.871, \ T_{\max} = 0.891$	$l = -12 \rightarrow 12$
D - for our out	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from
$wR(F^2) = 0.072$	neighbouring sites
<i>S</i> = 1.08	H atoms treated by a mixture of independent
4393 reflections	and constrained refinement
299 parameters	$w = 1/[\sigma^2(F_o^2) + (0.041P)^2 + 0.6531P]$
10 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.5000	0.5000	0.5000	0.02847 (7)	
Cl1	0.09644 (5)	0.653770 (19)	0.68436 (5)	0.04031 (11)	
01	0.2212 (2)	0.61643 (9)	0.6674 (2)	0.0791 (6)	
O2	-0.03933 (19)	0.62083 (7)	0.6713 (2)	0.0740 (5)	
03	0.1197 (3)	0.67800 (11)	0.8235 (2)	0.0915 (7)	
O4	0.0861 (3)	0.69789 (9)	0.5810(2)	0.0915 (7)	
O1W	0.24457 (16)	0.49525 (6)	0.50677 (16)	0.0390 (3)	
H11	0.191 (3)	0.5138 (10)	0.443 (2)	0.058 (7)*	
H12	0.214 (3)	0.5019 (9)	0.5870 (18)	0.057 (8)*	
O2W	0.50795 (16)	0.59683 (5)	0.57870 (14)	0.0396 (3)	
H21	0.534 (3)	0.6274 (7)	0.541 (3)	0.067 (8)*	
H22	0.4296 (19)	0.6048 (11)	0.618 (3)	0.064 (8)*	

N1	0.46982 (16)	0.52799 (6)	0.26042 (14)	0.0307 (3)
N2	0.33224 (18)	0.53698 (7)	0.02729 (15)	0.0390 (3)
N3	0.29425 (19)	0.45974 (7)	0.17037 (16)	0.0410 (3)
H31	0.322 (3)	0.4384 (8)	0.2423 (18)	0.052 (6)*
H32	0.235 (2)	0.4467 (9)	0.1011 (18)	0.047 (6)*
N4	0.09370 (18)	0.56440 (7)	0.29843 (16)	0.0388 (3)
N5	-0.08831 (18)	0.58548 (7)	0.09866 (17)	0.0442 (4)
N6	-0.0911 (2)	0.49855 (7)	0.2172 (2)	0.0469 (4)
H61	-0.151 (2)	0.4875 (10)	0.1456 (19)	0.048 (6)*
H62	-0.031 (2)	0.4731 (8)	0.256 (3)	0.055 (7)*
N7	0.5948 (2)	0.69581 (7)	0.44802 (18)	0.0450 (4)
N8	0.5465 (2)	0.78730 (7)	0.3350 (2)	0.0517 (4)
N9	0.3655 (3)	0.74176 (11)	0.4486 (3)	0.0756 (7)
H91	0.304 (3)	0.7695 (9)	0.432 (3)	0.077 (9)*
H92	0.329 (3)	0.7163 (10)	0.500 (3)	0.079 (9)*
C1	0.5453 (2)	0.57603 (8)	0.23394 (18)	0.0374 (4)
H1	0.6196	0.5892	0.3041	0.045*
C2	0.5189 (2)	0.60663 (8)	0.1092 (2)	0.0445 (4)
H2	0.5728	0.6398	0.0927	0.053*
C3	0.4069 (2)	0.58525 (9)	0.00885 (19)	0.0436 (4)
H3	0.3827	0.6058	-0.0758	0.052*
C4	0.3672 (2)	0.50879 (7)	0.15276 (18)	0.0314 (3)
C5	-0.0272 (3)	0.63751 (9)	0.0928 (2)	0.0507 (5)
H5	-0.0691	0.6630	0.0228	0.061*
C6	0.0952 (3)	0.65560 (9)	0.1854 (2)	0.0514 (5)
H6	0.1368	0.6921	0.1791	0.062*
C7	0.1519 (2)	0.61674 (9)	0.2871 (2)	0.0456 (4)
H7	0.2347	0.6274	0.3512	0.055*
C8	-0.02538 (19)	0.55082 (8)	0.20305 (18)	0.0351 (3)
C9	0.6867 (3)	0.78674 (9)	0.3004 (2)	0.0515 (5)
H9	0.7190	0.8176	0.2485	0.062*
C10	0.7873 (3)	0.74272 (10)	0.3375 (3)	0.0541 (5)
H10	0.8859	0.7435	0.3134	0.065*
C11	0.7340 (2)	0.69784 (9)	0.4116 (2)	0.0506 (5)
H11A	0.7989	0.6673	0.4377	0.061*
C12	0.5058 (2)	0.74143 (8)	0.4095 (2)	0.0443 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03046 (10)	0.03085 (10)	0.02343 (9)	-0.00094 (6)	0.00002 (6)	0.00250 (5)
Cl1	0.0351 (2)	0.0404 (2)	0.0463 (2)	0.00001 (17)	0.00821 (17)	0.00029 (18)
01	0.0470 (9)	0.0858 (13)	0.1065 (15)	0.0166 (9)	0.0179 (9)	-0.0229 (11)
O2	0.0410 (8)	0.0577 (10)	0.1204 (16)	-0.0111 (7)	-0.0042 (9)	0.0201 (10)
O3	0.0815 (14)	0.1346 (19)	0.0612 (11)	-0.0055 (13)	0.0194 (10)	-0.0369 (12)
O4	0.1003 (16)	0.0766 (13)	0.0950 (15)	-0.0187 (11)	-0.0007 (12)	0.0428 (11)
O1W	0.0313 (6)	0.0494 (8)	0.0356 (7)	0.0028 (5)	0.0013 (5)	0.0050 (5)
O2W	0.0476 (7)	0.0292 (6)	0.0440 (7)	0.0020 (5)	0.0133 (6)	0.0006 (5)

supporting information

N1	0.0335 (7)	0.0336 (7)	0.0243 (6)	-0.0003 (5)	0.0007 (5)	0.0016 (5)
N2	0.0413 (8)	0.0463 (8)	0.0276 (6)	0.0034 (6)	-0.0034 (6)	0.0030 (6)
N3	0.0487 (9)	0.0396 (8)	0.0320 (7)	-0.0089 (7)	-0.0069 (7)	0.0004 (6)
N4	0.0375 (8)	0.0432 (8)	0.0338 (7)	0.0055 (6)	-0.0039 (6)	-0.0007 (6)
N5	0.0398 (8)	0.0505 (9)	0.0401 (8)	0.0005 (7)	-0.0047 (6)	0.0119 (7)
N6	0.0480 (10)	0.0432 (9)	0.0463 (10)	-0.0037 (7)	-0.0091 (8)	0.0079 (7)
N7	0.0522 (10)	0.0364 (8)	0.0461 (9)	-0.0054 (7)	0.0046 (7)	0.0029 (7)
N8	0.0538 (10)	0.0419 (9)	0.0593 (10)	-0.0003 (8)	0.0061 (8)	0.0089 (8)
N9	0.0579 (13)	0.0616 (14)	0.113 (2)	0.0022 (11)	0.0351 (13)	0.0136 (13)
C1	0.0378 (9)	0.0410 (9)	0.0325 (8)	-0.0051 (7)	0.0009 (7)	0.0019 (7)
C2	0.0506 (11)	0.0431 (10)	0.0397 (9)	-0.0076 (8)	0.0054 (8)	0.0101 (8)
C3	0.0505 (11)	0.0491 (10)	0.0307 (8)	0.0048 (8)	0.0027 (7)	0.0111 (7)
C4	0.0327 (8)	0.0350 (8)	0.0264 (7)	0.0046 (6)	0.0022 (6)	-0.0012 (6)
C5	0.0529 (12)	0.0493 (11)	0.0491 (11)	0.0058 (9)	0.0018 (9)	0.0169 (9)
C6	0.0549 (12)	0.0396 (10)	0.0602 (12)	-0.0035 (9)	0.0084 (10)	0.0019 (9)
C7	0.0423 (10)	0.0480 (10)	0.0455 (10)	-0.0015 (8)	0.0006 (8)	-0.0093 (8)
C8	0.0323 (8)	0.0416 (9)	0.0311 (8)	0.0040 (7)	0.0022 (6)	0.0019 (7)
C9	0.0599 (13)	0.0458 (10)	0.0491 (11)	-0.0110 (9)	0.0079 (9)	0.0050 (9)
C10	0.0427 (11)	0.0554 (12)	0.0649 (13)	-0.0085 (9)	0.0098 (10)	-0.0018 (10)
C11	0.0462 (11)	0.0441 (10)	0.0597 (12)	0.0000 (8)	-0.0018 (9)	-0.0013 (9)
C12	0.0478 (10)	0.0378 (9)	0.0475 (10)	-0.0050 (8)	0.0061 (8)	-0.0028 (8)

Geometric parameters (Å, °)

Cd1—O1W	2.282 (1)	N6—C8	1.361 (2)
Cd1—O2W	2.367 (1)	N6—H61	0.85 (1)
Cd1-O1W ⁱ	2.282 (1)	N6—H62	0.85 (1)
Cd1—N1 ⁱ	2.323 (1)	N7—C11	1.321 (3)
Cd1—N1	2.323 (1)	N7—C12	1.348 (3)
Cd1-O2W ⁱ	2.367 (1)	N8—C9	1.323 (3)
Cl1—O4	1.406 (2)	N8—C12	1.345 (3)
Cl1—O3	1.414 (2)	N9—C12	1.338 (3)
Cl1—O2	1.423 (2)	N9—H91	0.85 (1)
Cl1—O1	1.431 (2)	N9—H92	0.85 (1)
O1W—H11	0.84(1)	C1—C2	1.366 (2)
O1W—H12	0.84 (1)	C1—H1	0.9300
O2W—H21	0.84 (1)	C2—C3	1.383 (3)
O2W—H22	0.84 (1)	C2—H2	0.9300
N1—C1	1.340 (2)	С3—Н3	0.9300
N1—C4	1.358 (2)	C5—C6	1.380 (3)
N2—C3	1.324 (3)	С5—Н5	0.9300
N2-C4	1.351 (2)	C6—C7	1.367 (3)
N3—C4	1.331 (2)	С6—Н6	0.9300
N3—H31	0.85(1)	C7—H7	0.9300
N3—H32	0.85 (1)	C9—C10	1.378 (3)
N4—C7	1.331 (3)	С9—Н9	0.9300
N4—C8	1.344 (2)	C10—C11	1.367 (3)
N5—C5	1.329 (3)	C10—H10	0.9300

N5—C8	1.340 (2)	C11—H11A	0.9300
O1W-Cd1-O1W ⁱ	180.0	C9—N8—C12	115.77 (18)
O1W—Cd1—N1 ⁱ	88.13 (5)	C12—N9—H91	124 (2)
O1W ⁱ —Cd1—N1 ⁱ	91.87 (5)	C12—N9—H92	125 (2)
O1W—Cd1—N1	91.87 (5)	H91—N9—H92	111 (3)
O1W ⁱ —Cd1—N1	88.13 (5)	N1—C1—C2	123.39 (16)
N1 ⁱ —Cd1—N1	180.0	N1—C1—H1	118.3
O1W-Cd1-O2W ⁱ	88.14 (5)	C2—C1—H1	118.3
O1W ⁱ —Cd1—O2W ⁱ	91.86 (5)	C1—C2—C3	115.88 (17)
N1 ⁱ —Cd1—O2W ⁱ	91.78 (5)	C1—C2—H2	122.1
N1—Cd1—O2W ⁱ	88.22 (5)	C3—C2—H2	122.1
O1W—Cd1—O2W	91.86 (5)	N2—C3—C2	123.28 (16)
O1W ⁱ —Cd1—O2W	88.14 (5)	N2—C3—H3	118.4
N1 ⁱ —Cd1—O2W	88.22 (5)	С2—С3—Н3	118.4
N1—Cd1—O2W	91.78 (5)	N3—C4—N2	117.09 (16)
O2W ⁱ —Cd1—O2W	180.0	N3—C4—N1	119.05 (15)
O4—Cl1—O3	109.65 (15)	N2-C4-N1	123.85 (16)
O4—Cl1—O2	110.08 (12)	N5-C5-C6	123.28 (18)
O3—Cl1—O2	109.20 (14)	N5—C5—H5	118.4
O4—Cl1—O1	110.95 (15)	С6—С5—Н5	118.4
O3—Cl1—O1	107.97 (14)	C7—C6—C5	116.11 (19)
O2—Cl1—O1	108.96 (12)	С7—С6—Н6	121.9
Cd1—O1W—H11	116.4 (19)	С5—С6—Н6	121.9
Cd1—O1W—H12	116 (2)	N4—C7—C6	122.90 (18)
H11—O1W—H12	109 (3)	N4—C7—H7	118.5
Cd1—O2W—H21	132.5 (19)	С6—С7—Н7	118.5
Cd1—O2W—H22	110.3 (18)	N5—C8—N4	125.27 (17)
H21—O2W—H22	106 (3)	N5—C8—N6	117.33 (16)
C1—N1—C4	116.43 (14)	N4—C8—N6	117.34 (16)
C1—N1—Cd1	113.95 (10)	N8—C9—C10	123.3 (2)
C4—N1—Cd1	128.40 (11)	N8—C9—H9	118.4
C3—N2—C4	117.02 (15)	С10—С9—Н9	118.4
C4—N3—H31	119.6 (16)	С11—С10—С9	116.3 (2)
C4—N3—H32	119.0 (15)	C11—C10—H10	121.9
H31—N3—H32	120 (2)	С9—С10—Н10	121.9
C7—N4—C8	116.48 (16)	N7—C11—C10	123.1 (2)
C5—N5—C8	115.96 (16)	N7—C11—H11A	118.4
C8—N6—H61	115.5 (17)	C10-C11-H11A	118.4
C8—N6—H62	114.2 (18)	N9—C12—N8	116.8 (2)
H61—N6—H62	116 (2)	N9—C12—N7	117.91 (19)
C11—N7—C12	116.22 (17)	N8—C12—N7	125.3 (2)
O1W—Cd1—N1—C1	127.25 (12)	Cd1—N1—C4—N2	162.47 (13)
O1W ⁱ —Cd1—N1—C1	-52.75 (12)	C8—N5—C5—C6	1.1 (3)
O2W ⁱ —Cd1—N1—C1	-144.67 (12)	N5-C5-C6-C7	-0.5 (3)
O2W—Cd1—N1—C1	35.33 (12)	C8—N4—C7—C6	0.4 (3)
O1W—Cd1—N1—C4	-39.56 (14)	C5—C6—C7—N4	-0.3 (3)

O1W ⁱ —Cd1—N1—C4	140.44 (14)	C5—N5—C8—N4	-1.1 (3)
O2W ⁱ —Cd1—N1—C4	48.52 (14)	C5—N5—C8—N6	176.16 (19)
O2W—Cd1—N1—C4	-131.48 (14)	C7—N4—C8—N5	0.3 (3)
C4—N1—C1—C2	2.8 (3)	C7—N4—C8—N6	-176.88 (18)
Cd1—N1—C1—C2	-165.63 (16)	C12—N8—C9—C10	-0.3 (3)
N1—C1—C2—C3	0.3 (3)	N8—C9—C10—C11	1.1 (3)
C4—N2—C3—C2	1.5 (3)	C12—N7—C11—C10	-0.8 (3)
C1-C2-C3-N2	-2.6 (3)	C9—C10—C11—N7	-0.4 (3)
C3—N2—C4—N3	-178.82 (18)	C9—N8—C12—N9	178.4 (2)
C3—N2—C4—N1	2.0 (3)	C9—N8—C12—N7	-1.1 (3)
C1—N1—C4—N3	176.72 (17)	C11—N7—C12—N9	-177.8 (2)
Cd1—N1—C4—N3	-16.7 (2)	C11—N7—C12—N8	1.7 (3)
C1—N1—C4—N2	-4.1 (2)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	D—H···A
O1w—H11…N4	0.84 (1)	1.92 (1)	2.758 (2)	171 (3)
O1w—H12···N6 ⁱⁱ	0.84 (1)	2.24 (1)	3.059 (3)	165 (2)
O2w—H21…N7	0.84 (1)	1.92 (1)	2.756 (2)	178 (3)
O2w—H22…O1	0.84 (1)	1.98 (1)	2.806 (2)	167 (3)
N3—H31···O2w ⁱ	0.85 (1)	2.28 (1)	3.070 (2)	154 (2)
N3—H32…N5 ⁱⁱⁱ	0.85 (1)	2.28(1)	3.127 (2)	175 (2)
N6—H61···N2 ⁱⁱⁱ	0.85 (1)	2.23 (1)	3.071 (2)	173 (2)
N6—H62…O2 ⁱⁱ	0.85 (1)	2.35(1)	3.140 (2)	155 (2)
N9—H91…O3 ^{iv}	0.85 (1)	2.20(1)	3.009 (4)	159 (3)
N9—H92…O4	0.85 (1)	2.41 (2)	3.073 (3)	135 (3)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) x, -y+3/2, z-1/2.