metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­pyrazine-κN1)tetra­aqua­cadmium(II) bis­­(perchlorate)–2-amino­pyrazine (1/4)

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 November 2009; accepted 14 November 2009; online 21 November 2009)

In the title compound, [Cd(C4H5N3)2(H2O)4](ClO4)2·4C4H5N3, the CdII atom (site symmetry [\overline{1}]) is coordinated by two N-heterocycles and four water mol­ecules, resulting in a distorted trans-CdN2O4 octa­hedral geometry for the metal. In the crystal, the cation, anion and free N-heterocycle mol­ecules are linked by N—H⋯N, N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the cadmium nitrate adduct of 2-amino­pyrazine, see: Tai et al. (2008[Tai, X.-S., Feng, Y.-M. & Wang, L.-T. (2008). Acta Cryst. E64, m537.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C4H5N3)2(H2O)4](ClO4)2·4C4H5N3

  • Mr = 954.02

  • Monoclinic, P 21 /c

  • a = 8.8912 (2) Å

  • b = 23.2402 (4) Å

  • c = 9.3689 (2) Å

  • β = 96.4263 (7)°

  • V = 1923.76 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.871, Tmax = 0.891

  • 18645 measured reflections

  • 4393 independent reflections

  • 3982 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.08

  • 4393 reflections

  • 299 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1W 2.282 (1)
Cd1—O2W 2.367 (1)
Cd1—N1 2.323 (1)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯N4 0.84 (1) 1.92 (1) 2.758 (2) 171 (3)
O1w—H12⋯N6i 0.84 (1) 2.24 (1) 3.059 (3) 165 (2)
O2w—H21⋯N7 0.84 (1) 1.92 (1) 2.756 (2) 178 (3)
O2w—H22⋯O1 0.84 (1) 1.98 (1) 2.806 (2) 167 (3)
N3—H31⋯O2wii 0.85 (1) 2.28 (1) 3.070 (2) 154 (2)
N3—H32⋯N5iii 0.85 (1) 2.28 (1) 3.127 (2) 175 (2)
N6—H61⋯N2iii 0.85 (1) 2.23 (1) 3.071 (2) 173 (2)
N6—H62⋯O2i 0.85 (1) 2.35 (1) 3.140 (2) 155 (2)
N9—H91⋯O3iv 0.85 (1) 2.20 (1) 3.009 (4) 159 (3)
N9—H92⋯O4 0.85 (1) 2.41 (2) 3.073 (3) 135 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the cadmium nitrate adduct of 2-aminopyrazine, see: Tai et al. (2008).

Experimental top

To an aqueous solution of 2-aminopyrimidine (0.19 g, 2 mmol) was added cadmium perchlorate hydrate (0.662 g, 2 mmol). Colorless prisms of (I) separated from the solution after a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C). The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H = O–H = 0.85±0.01 Å; their Uiso values were refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) shown at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Unlabelled atoms are generated by the symmetry operation (1–x, 1–y, 1–z).
Bis(2-aminopyrazine-κN1)tetraaquacadmium(II) bis(perchlorate)–2-aminopyrazine (1/4) top
Crystal data top
[Cd(C4H5N3)2(H2O)4](ClO4)2·4C4H5N3F(000) = 972
Mr = 954.02Dx = 1.647 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16676 reflections
a = 8.8912 (2) Åθ = 3.0–27.5°
b = 23.2402 (4) ŵ = 0.79 mm1
c = 9.3689 (2) ÅT = 293 K
β = 96.4263 (7)°Prism, colorless
V = 1923.76 (7) Å30.18 × 0.15 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4393 independent reflections
Radiation source: fine-focus sealed tube3982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.871, Tmax = 0.891k = 3030
18645 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.041P)2 + 0.6531P]
where P = (Fo2 + 2Fc2)/3
4393 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.34 e Å3
10 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cd(C4H5N3)2(H2O)4](ClO4)2·4C4H5N3V = 1923.76 (7) Å3
Mr = 954.02Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.8912 (2) ŵ = 0.79 mm1
b = 23.2402 (4) ÅT = 293 K
c = 9.3689 (2) Å0.18 × 0.15 × 0.15 mm
β = 96.4263 (7)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4393 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3982 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.891Rint = 0.024
18645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02610 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.34 e Å3
4393 reflectionsΔρmin = 0.58 e Å3
299 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.02847 (7)
Cl10.09644 (5)0.653770 (19)0.68436 (5)0.04031 (11)
O10.2212 (2)0.61643 (9)0.6674 (2)0.0791 (6)
O20.03933 (19)0.62083 (7)0.6713 (2)0.0740 (5)
O30.1197 (3)0.67800 (11)0.8235 (2)0.0915 (7)
O40.0861 (3)0.69789 (9)0.5810 (2)0.0915 (7)
O1W0.24457 (16)0.49525 (6)0.50677 (16)0.0390 (3)
H110.191 (3)0.5138 (10)0.443 (2)0.058 (7)*
H120.214 (3)0.5019 (9)0.5870 (18)0.057 (8)*
O2W0.50795 (16)0.59683 (5)0.57870 (14)0.0396 (3)
H210.534 (3)0.6274 (7)0.541 (3)0.067 (8)*
H220.4296 (19)0.6048 (11)0.618 (3)0.064 (8)*
N10.46982 (16)0.52799 (6)0.26042 (14)0.0307 (3)
N20.33224 (18)0.53698 (7)0.02729 (15)0.0390 (3)
N30.29425 (19)0.45974 (7)0.17037 (16)0.0410 (3)
H310.322 (3)0.4384 (8)0.2423 (18)0.052 (6)*
H320.235 (2)0.4467 (9)0.1011 (18)0.047 (6)*
N40.09370 (18)0.56440 (7)0.29843 (16)0.0388 (3)
N50.08831 (18)0.58548 (7)0.09866 (17)0.0442 (4)
N60.0911 (2)0.49855 (7)0.2172 (2)0.0469 (4)
H610.151 (2)0.4875 (10)0.1456 (19)0.048 (6)*
H620.031 (2)0.4731 (8)0.256 (3)0.055 (7)*
N70.5948 (2)0.69581 (7)0.44802 (18)0.0450 (4)
N80.5465 (2)0.78730 (7)0.3350 (2)0.0517 (4)
N90.3655 (3)0.74176 (11)0.4486 (3)0.0756 (7)
H910.304 (3)0.7695 (9)0.432 (3)0.077 (9)*
H920.329 (3)0.7163 (10)0.500 (3)0.079 (9)*
C10.5453 (2)0.57603 (8)0.23394 (18)0.0374 (4)
H10.61960.58920.30410.045*
C20.5189 (2)0.60663 (8)0.1092 (2)0.0445 (4)
H20.57280.63980.09270.053*
C30.4069 (2)0.58525 (9)0.00885 (19)0.0436 (4)
H30.38270.60580.07580.052*
C40.3672 (2)0.50879 (7)0.15276 (18)0.0314 (3)
C50.0272 (3)0.63751 (9)0.0928 (2)0.0507 (5)
H50.06910.66300.02280.061*
C60.0952 (3)0.65560 (9)0.1854 (2)0.0514 (5)
H60.13680.69210.17910.062*
C70.1519 (2)0.61674 (9)0.2871 (2)0.0456 (4)
H70.23470.62740.35120.055*
C80.02538 (19)0.55082 (8)0.20305 (18)0.0351 (3)
C90.6867 (3)0.78674 (9)0.3004 (2)0.0515 (5)
H90.71900.81760.24850.062*
C100.7873 (3)0.74272 (10)0.3375 (3)0.0541 (5)
H100.88590.74350.31340.065*
C110.7340 (2)0.69784 (9)0.4116 (2)0.0506 (5)
H11A0.79890.66730.43770.061*
C120.5058 (2)0.74143 (8)0.4095 (2)0.0443 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03046 (10)0.03085 (10)0.02343 (9)0.00094 (6)0.00002 (6)0.00250 (5)
Cl10.0351 (2)0.0404 (2)0.0463 (2)0.00001 (17)0.00821 (17)0.00029 (18)
O10.0470 (9)0.0858 (13)0.1065 (15)0.0166 (9)0.0179 (9)0.0229 (11)
O20.0410 (8)0.0577 (10)0.1204 (16)0.0111 (7)0.0042 (9)0.0201 (10)
O30.0815 (14)0.1346 (19)0.0612 (11)0.0055 (13)0.0194 (10)0.0369 (12)
O40.1003 (16)0.0766 (13)0.0950 (15)0.0187 (11)0.0007 (12)0.0428 (11)
O1W0.0313 (6)0.0494 (8)0.0356 (7)0.0028 (5)0.0013 (5)0.0050 (5)
O2W0.0476 (7)0.0292 (6)0.0440 (7)0.0020 (5)0.0133 (6)0.0006 (5)
N10.0335 (7)0.0336 (7)0.0243 (6)0.0003 (5)0.0007 (5)0.0016 (5)
N20.0413 (8)0.0463 (8)0.0276 (6)0.0034 (6)0.0034 (6)0.0030 (6)
N30.0487 (9)0.0396 (8)0.0320 (7)0.0089 (7)0.0069 (7)0.0004 (6)
N40.0375 (8)0.0432 (8)0.0338 (7)0.0055 (6)0.0039 (6)0.0007 (6)
N50.0398 (8)0.0505 (9)0.0401 (8)0.0005 (7)0.0047 (6)0.0119 (7)
N60.0480 (10)0.0432 (9)0.0463 (10)0.0037 (7)0.0091 (8)0.0079 (7)
N70.0522 (10)0.0364 (8)0.0461 (9)0.0054 (7)0.0046 (7)0.0029 (7)
N80.0538 (10)0.0419 (9)0.0593 (10)0.0003 (8)0.0061 (8)0.0089 (8)
N90.0579 (13)0.0616 (14)0.113 (2)0.0022 (11)0.0351 (13)0.0136 (13)
C10.0378 (9)0.0410 (9)0.0325 (8)0.0051 (7)0.0009 (7)0.0019 (7)
C20.0506 (11)0.0431 (10)0.0397 (9)0.0076 (8)0.0054 (8)0.0101 (8)
C30.0505 (11)0.0491 (10)0.0307 (8)0.0048 (8)0.0027 (7)0.0111 (7)
C40.0327 (8)0.0350 (8)0.0264 (7)0.0046 (6)0.0022 (6)0.0012 (6)
C50.0529 (12)0.0493 (11)0.0491 (11)0.0058 (9)0.0018 (9)0.0169 (9)
C60.0549 (12)0.0396 (10)0.0602 (12)0.0035 (9)0.0084 (10)0.0019 (9)
C70.0423 (10)0.0480 (10)0.0455 (10)0.0015 (8)0.0006 (8)0.0093 (8)
C80.0323 (8)0.0416 (9)0.0311 (8)0.0040 (7)0.0022 (6)0.0019 (7)
C90.0599 (13)0.0458 (10)0.0491 (11)0.0110 (9)0.0079 (9)0.0050 (9)
C100.0427 (11)0.0554 (12)0.0649 (13)0.0085 (9)0.0098 (10)0.0018 (10)
C110.0462 (11)0.0441 (10)0.0597 (12)0.0000 (8)0.0018 (9)0.0013 (9)
C120.0478 (10)0.0378 (9)0.0475 (10)0.0050 (8)0.0061 (8)0.0028 (8)
Geometric parameters (Å, º) top
Cd1—O1W2.282 (1)N6—C81.361 (2)
Cd1—O2W2.367 (1)N6—H610.85 (1)
Cd1—O1Wi2.282 (1)N6—H620.85 (1)
Cd1—N1i2.323 (1)N7—C111.321 (3)
Cd1—N12.323 (1)N7—C121.348 (3)
Cd1—O2Wi2.367 (1)N8—C91.323 (3)
Cl1—O41.406 (2)N8—C121.345 (3)
Cl1—O31.414 (2)N9—C121.338 (3)
Cl1—O21.423 (2)N9—H910.85 (1)
Cl1—O11.431 (2)N9—H920.85 (1)
O1W—H110.84 (1)C1—C21.366 (2)
O1W—H120.84 (1)C1—H10.9300
O2W—H210.84 (1)C2—C31.383 (3)
O2W—H220.84 (1)C2—H20.9300
N1—C11.340 (2)C3—H30.9300
N1—C41.358 (2)C5—C61.380 (3)
N2—C31.324 (3)C5—H50.9300
N2—C41.351 (2)C6—C71.367 (3)
N3—C41.331 (2)C6—H60.9300
N3—H310.85 (1)C7—H70.9300
N3—H320.85 (1)C9—C101.378 (3)
N4—C71.331 (3)C9—H90.9300
N4—C81.344 (2)C10—C111.367 (3)
N5—C51.329 (3)C10—H100.9300
N5—C81.340 (2)C11—H11A0.9300
O1W—Cd1—O1Wi180.0C9—N8—C12115.77 (18)
O1W—Cd1—N1i88.13 (5)C12—N9—H91124 (2)
O1Wi—Cd1—N1i91.87 (5)C12—N9—H92125 (2)
O1W—Cd1—N191.87 (5)H91—N9—H92111 (3)
O1Wi—Cd1—N188.13 (5)N1—C1—C2123.39 (16)
N1i—Cd1—N1180.0N1—C1—H1118.3
O1W—Cd1—O2Wi88.14 (5)C2—C1—H1118.3
O1Wi—Cd1—O2Wi91.86 (5)C1—C2—C3115.88 (17)
N1i—Cd1—O2Wi91.78 (5)C1—C2—H2122.1
N1—Cd1—O2Wi88.22 (5)C3—C2—H2122.1
O1W—Cd1—O2W91.86 (5)N2—C3—C2123.28 (16)
O1Wi—Cd1—O2W88.14 (5)N2—C3—H3118.4
N1i—Cd1—O2W88.22 (5)C2—C3—H3118.4
N1—Cd1—O2W91.78 (5)N3—C4—N2117.09 (16)
O2Wi—Cd1—O2W180.0N3—C4—N1119.05 (15)
O4—Cl1—O3109.65 (15)N2—C4—N1123.85 (16)
O4—Cl1—O2110.08 (12)N5—C5—C6123.28 (18)
O3—Cl1—O2109.20 (14)N5—C5—H5118.4
O4—Cl1—O1110.95 (15)C6—C5—H5118.4
O3—Cl1—O1107.97 (14)C7—C6—C5116.11 (19)
O2—Cl1—O1108.96 (12)C7—C6—H6121.9
Cd1—O1W—H11116.4 (19)C5—C6—H6121.9
Cd1—O1W—H12116 (2)N4—C7—C6122.90 (18)
H11—O1W—H12109 (3)N4—C7—H7118.5
Cd1—O2W—H21132.5 (19)C6—C7—H7118.5
Cd1—O2W—H22110.3 (18)N5—C8—N4125.27 (17)
H21—O2W—H22106 (3)N5—C8—N6117.33 (16)
C1—N1—C4116.43 (14)N4—C8—N6117.34 (16)
C1—N1—Cd1113.95 (10)N8—C9—C10123.3 (2)
C4—N1—Cd1128.40 (11)N8—C9—H9118.4
C3—N2—C4117.02 (15)C10—C9—H9118.4
C4—N3—H31119.6 (16)C11—C10—C9116.3 (2)
C4—N3—H32119.0 (15)C11—C10—H10121.9
H31—N3—H32120 (2)C9—C10—H10121.9
C7—N4—C8116.48 (16)N7—C11—C10123.1 (2)
C5—N5—C8115.96 (16)N7—C11—H11A118.4
C8—N6—H61115.5 (17)C10—C11—H11A118.4
C8—N6—H62114.2 (18)N9—C12—N8116.8 (2)
H61—N6—H62116 (2)N9—C12—N7117.91 (19)
C11—N7—C12116.22 (17)N8—C12—N7125.3 (2)
O1W—Cd1—N1—C1127.25 (12)Cd1—N1—C4—N2162.47 (13)
O1Wi—Cd1—N1—C152.75 (12)C8—N5—C5—C61.1 (3)
O2Wi—Cd1—N1—C1144.67 (12)N5—C5—C6—C70.5 (3)
O2W—Cd1—N1—C135.33 (12)C8—N4—C7—C60.4 (3)
O1W—Cd1—N1—C439.56 (14)C5—C6—C7—N40.3 (3)
O1Wi—Cd1—N1—C4140.44 (14)C5—N5—C8—N41.1 (3)
O2Wi—Cd1—N1—C448.52 (14)C5—N5—C8—N6176.16 (19)
O2W—Cd1—N1—C4131.48 (14)C7—N4—C8—N50.3 (3)
C4—N1—C1—C22.8 (3)C7—N4—C8—N6176.88 (18)
Cd1—N1—C1—C2165.63 (16)C12—N8—C9—C100.3 (3)
N1—C1—C2—C30.3 (3)N8—C9—C10—C111.1 (3)
C4—N2—C3—C21.5 (3)C12—N7—C11—C100.8 (3)
C1—C2—C3—N22.6 (3)C9—C10—C11—N70.4 (3)
C3—N2—C4—N3178.82 (18)C9—N8—C12—N9178.4 (2)
C3—N2—C4—N12.0 (3)C9—N8—C12—N71.1 (3)
C1—N1—C4—N3176.72 (17)C11—N7—C12—N9177.8 (2)
Cd1—N1—C4—N316.7 (2)C11—N7—C12—N81.7 (3)
C1—N1—C4—N24.1 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N40.84 (1)1.92 (1)2.758 (2)171 (3)
O1w—H12···N6ii0.84 (1)2.24 (1)3.059 (3)165 (2)
O2w—H21···N70.84 (1)1.92 (1)2.756 (2)178 (3)
O2w—H22···O10.84 (1)1.98 (1)2.806 (2)167 (3)
N3—H31···O2wi0.85 (1)2.28 (1)3.070 (2)154 (2)
N3—H32···N5iii0.85 (1)2.28 (1)3.127 (2)175 (2)
N6—H61···N2iii0.85 (1)2.23 (1)3.071 (2)173 (2)
N6—H62···O2ii0.85 (1)2.35 (1)3.140 (2)155 (2)
N9—H91···O3iv0.85 (1)2.20 (1)3.009 (4)159 (3)
N9—H92···O40.85 (1)2.41 (2)3.073 (3)135 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C4H5N3)2(H2O)4](ClO4)2·4C4H5N3
Mr954.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8912 (2), 23.2402 (4), 9.3689 (2)
β (°) 96.4263 (7)
V3)1923.76 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.18 × 0.15 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.871, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
18645, 4393, 3982
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.08
No. of reflections4393
No. of parameters299
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.58

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Cd1—O1W2.282 (1)Cd1—N12.323 (1)
Cd1—O2W2.367 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N40.84 (1)1.92 (1)2.758 (2)171 (3)
O1w—H12···N6i0.84 (1)2.24 (1)3.059 (3)165 (2)
O2w—H21···N70.84 (1)1.92 (1)2.756 (2)178 (3)
O2w—H22···O10.84 (1)1.98 (1)2.806 (2)167 (3)
N3—H31···O2wii0.85 (1)2.28 (1)3.070 (2)154 (2)
N3—H32···N5iii0.85 (1)2.28 (1)3.127 (2)175 (2)
N6—H61···N2iii0.85 (1)2.23 (1)3.071 (2)173 (2)
N6—H62···O2i0.85 (1)2.35 (1)3.140 (2)155 (2)
N9—H91···O3iv0.85 (1)2.20 (1)3.009 (4)159 (3)
N9—H92···O40.85 (1)2.41 (2)3.073 (3)135 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+3/2, z1/2.
 

Acknowledgements

We thank the Key Project of Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Feng, Y.-M. & Wang, L.-T. (2008). Acta Cryst. E64, m537.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds