organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3239-o3240

3-[(E)-(7-Chloro-4-quinol­yl)hydrazono­meth­yl]benzo­nitrile monohydrate

aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), Far-Manguinhos, Rua Sizenando Nabuco, 100 Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 November 2009; accepted 21 November 2009; online 28 November 2009)

The title monohydrate, C17H11ClN4·H2O, features an essentially planar organic mol­ecule, as seen in the dihedral angle of 2.42 (8)° formed between the quinoline and benzene planes. The conformation about the imine bond is E, and the N—H group is oriented towards the quinoline residue. The major feature of the crystal packing is the formation of supra­molecular chains along [100], whereby the water mol­ecule accepts one N—H⋯O hydrogen bond and makes two O—H⋯N hydrogen bonds. A C—H⋯O link is also present.

Related literature

For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969[Elslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600-607.]); Font et al. (1997[Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Disc. 14, 259-272.]); Kaminsky & Meltzer (1968[Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160-163.]); Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]); Nakamura et al. (1999[Nakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618-624.]); Palmer et al. (1993[Palmer, K. J., Holliday, S. M. & and Brogden, R. N. (1993). Drugs, 45, 430-475.]); Ridley (2002[Ridley, R. G. (2002). Nature (London), 415, 686-693.]); Sloboda et al. (1991[Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855-860.]); Tanenbaum & Tuffanelli (1980[Tanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587-591.]); Warshakoon et al. (2006[Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207-5211.]). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007[Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194-198.]); Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]); da Silva et al. (2003[Silva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21-39.]); de Souza et al. (2005[Souza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009-1017.]). For a related crystallographic study on neutral species related to the title compound, see: Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11ClN4·H2O

  • Mr = 324.76

  • Triclinic, [P \overline 1]

  • a = 8.7406 (2) Å

  • b = 9.8587 (3) Å

  • c = 10.2301 (2) Å

  • α = 110.8897 (15)°

  • β = 93.4341 (16)°

  • γ = 110.6766 (15)°

  • V = 752.93 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 K

  • 0.12 × 0.09 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.990

  • 14600 measured reflections

  • 3425 independent reflections

  • 2902 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.109

  • S = 1.10

  • 3425 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯N4i 0.83 (3) 2.21 (3) 2.982 (3) 155 (3)
O1w—H2w⋯N1ii 0.86 (3) 1.99 (3) 2.828 (3) 164 (3)
N2—H2n⋯O1w 0.86 (3) 2.07 (3) 2.917 (2) 167 (3)
C5—H5⋯O1w 0.95 2.39 3.331 (3) 169
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The title compound, crystallized as a hydrate, (I), was prepared as part of an on-going investigation aimed at developing anti-malarial compounds based on the quinoline nucleus (Andrade et al.,2007; Cunico et al., 2006; da Silva et al., 2003; de Souza et al., 2005. The motivation for examining quinoline derivatives arises as the majority of anti-malarial drugs, such as chloroquine (Tanenbaum & Tuffanelli, 1980), mefloquine (Palmer et al., 1993), primaquine (Elslager et al., 1969) and amodiaquine (Ridley, 2002), possess a quinoline ring which has been the mainstay of malaria chemotherapy for much of the past 40 years (Font et al., 1997; Kaminsky & Meltzer, 1968; Musiol et al., 2006; Nakamura et al., 1999; Sloboda et al., 1991; Warshakoon et al., 2006).

The molecular structure of (I), Fig. 1, comprises an essentially planar quinoline framework with the maximum deviation from the least-squares plane through the non-hydrogen atoms being -0.012 (2) Å for atom C3. The planarity extends through the azo moiety (the C2–C3–N2–N3 and N2–N3–C10–C11 torsion angles are 2.4 (3) and -179.76 (16) °, respectively) into the terminal benzene; the dihedral angle formed between the quinoline and benzene rings is 2.42 (8) °. The conformation about the C10N3 bond is E. Finally, the amine-N2 group is oriented towards the quinoline nucleus as observed in related structures (Kaiser et al., (2009).

The water molecule of crystallization plays a pivotal role in the crystal packing. The water-H atoms form hydrogen bonds to the the pyridine-N1 and nitrile-N4 atoms, derived from different molecules, and at the same time accepts a hydrogen bond from the amino-N2 atom, Table 1. The tetrahedral environment for the O1w atom is completed by an acceptor interaction from the C5—H atom. The net result of the hydrogen bonding interactions is the formation of a supramolecular chain aligned along the a direction, Fig. 2.

Related literature top

For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969); Font et al. (1997); Kaminsky & Meltzer (1968); Musiol et al. (2006); Nakamura et al. (1999); Palmer et al. (1993); Ridley (2002); Sloboda et al. (1991); Tanenbaum & Tuffanelli (1980); Warshakoon et al. (2006). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007); Cunico et al. (2006); da Silva et al. (2003); de Souza et al. (2005). For a related crystallographic study on neutral species related to the title compound, see: Kaiser et al. (2009).

Experimental top

A solution of 7-chloro-4-hydrazinoquinoline (0.20 g, 1.0 mmol) and 3-cyanobenzaldehyde (1.2 mmol) in EtOH (5 ml) was maintained at room temperature overnight and rotary evaporated. The solid residue, was washed with cold Et2O (3 x 10 ml) and recrystallized from EtOH m. pt. 485–487 K, yield 77%. The sample for the X-ray study was slowly grown from moist EtOH and was found to be the monohydrate. MS/ESI: 305 [M—H—H2O], based on 35Cl. IR [KBr, cm-1] ν: 3215 (NH), 1577 (CN).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in (I) showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Supramolecular 1-D chain in (I) aligned along [100]. The O–H···N (orange) and N–H···O (blue) hydrogen bonds are shown as dashed lines. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
3-[(E)-(7-Chloro-4-quinolyl)hydrazonomethyl]benzonitrile mono hydrate top
Crystal data top
C17H11ClN4·H2OZ = 2
Mr = 324.76F(000) = 336
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7406 (2) ÅCell parameters from 11816 reflections
b = 9.8587 (3) Åθ = 2.9–27.5°
c = 10.2301 (2) ŵ = 0.26 mm1
α = 110.8897 (15)°T = 120 K
β = 93.4341 (16)°Plate, yellow
γ = 110.6766 (15)°0.12 × 0.09 × 0.04 mm
V = 752.93 (3) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
3425 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2902 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.046
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1212
Tmin = 0.901, Tmax = 0.990l = 1313
14600 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.023P)2 + 0.7336P]
where P = (Fo2 + 2Fc2)/3
3425 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H11ClN4·H2Oγ = 110.6766 (15)°
Mr = 324.76V = 752.93 (3) Å3
Triclinic, P1Z = 2
a = 8.7406 (2) ÅMo Kα radiation
b = 9.8587 (3) ŵ = 0.26 mm1
c = 10.2301 (2) ÅT = 120 K
α = 110.8897 (15)°0.12 × 0.09 × 0.04 mm
β = 93.4341 (16)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3425 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2902 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.990Rint = 0.046
14600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.32 e Å3
3425 reflectionsΔρmin = 0.25 e Å3
217 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19140 (6)0.44486 (6)0.08216 (5)0.02503 (14)
N10.0883 (2)0.39813 (19)0.38535 (17)0.0215 (3)
N20.49296 (19)0.27107 (18)0.43632 (17)0.0181 (3)
H2N0.559 (3)0.270 (3)0.377 (2)0.022*
N30.52218 (19)0.23502 (18)0.55031 (16)0.0181 (3)
N41.1329 (2)0.0074 (2)0.7938 (2)0.0357 (5)
C10.1296 (2)0.3704 (2)0.4975 (2)0.0217 (4)
H10.06350.38060.56790.026*
C20.2613 (2)0.3278 (2)0.5209 (2)0.0204 (4)
H20.28160.30860.60360.024*
C30.3625 (2)0.3139 (2)0.42154 (19)0.0164 (4)
C40.3262 (2)0.3449 (2)0.29879 (19)0.0160 (4)
C50.4207 (2)0.3368 (2)0.1905 (2)0.0191 (4)
H50.51500.31130.19830.023*
C60.3779 (2)0.3654 (2)0.0746 (2)0.0203 (4)
H60.44110.35830.00190.024*
C70.2398 (2)0.4052 (2)0.0646 (2)0.0194 (4)
C80.1449 (2)0.4147 (2)0.1657 (2)0.0193 (4)
H80.05150.44090.15570.023*
C90.1869 (2)0.3852 (2)0.28647 (19)0.0178 (4)
C100.6454 (2)0.1947 (2)0.5564 (2)0.0197 (4)
H100.70950.19190.48440.024*
C110.6892 (2)0.1527 (2)0.67264 (19)0.0192 (4)
C120.8252 (2)0.1113 (2)0.6757 (2)0.0216 (4)
H120.88670.10860.60200.026*
C130.8715 (2)0.0735 (2)0.7873 (2)0.0231 (4)
C140.7821 (3)0.0759 (2)0.8950 (2)0.0286 (5)
H140.81440.05080.97080.034*
C150.6451 (3)0.1154 (3)0.8908 (2)0.0298 (5)
H150.58290.11660.96400.036*
C160.5979 (3)0.1531 (2)0.7807 (2)0.0240 (4)
H160.50340.17920.77860.029*
C171.0162 (3)0.0351 (2)0.7902 (2)0.0275 (5)
O1W0.74203 (19)0.2487 (2)0.26148 (16)0.0261 (3)
H1W0.746 (3)0.160 (3)0.231 (3)0.039*
H2W0.845 (4)0.311 (3)0.302 (3)0.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0233 (2)0.0305 (3)0.0261 (3)0.0115 (2)0.00062 (18)0.0168 (2)
N10.0203 (8)0.0239 (8)0.0255 (8)0.0132 (7)0.0078 (7)0.0109 (7)
N20.0171 (8)0.0231 (8)0.0199 (8)0.0113 (6)0.0052 (6)0.0115 (7)
N30.0198 (8)0.0162 (7)0.0177 (7)0.0070 (6)0.0004 (6)0.0069 (6)
N40.0342 (10)0.0308 (10)0.0417 (11)0.0172 (9)0.0047 (9)0.0122 (9)
C10.0209 (9)0.0243 (10)0.0229 (9)0.0116 (8)0.0080 (8)0.0097 (8)
C20.0210 (9)0.0211 (9)0.0201 (9)0.0087 (8)0.0031 (7)0.0094 (8)
C30.0150 (8)0.0130 (8)0.0191 (9)0.0044 (7)0.0018 (7)0.0055 (7)
C40.0144 (8)0.0136 (8)0.0195 (9)0.0063 (7)0.0021 (7)0.0056 (7)
C50.0162 (9)0.0211 (9)0.0225 (9)0.0100 (7)0.0031 (7)0.0094 (8)
C60.0182 (9)0.0218 (9)0.0223 (9)0.0083 (8)0.0049 (7)0.0100 (8)
C70.0188 (9)0.0179 (9)0.0217 (9)0.0067 (7)0.0013 (7)0.0097 (7)
C80.0147 (8)0.0189 (9)0.0250 (9)0.0084 (7)0.0012 (7)0.0085 (8)
C90.0153 (8)0.0155 (8)0.0212 (9)0.0068 (7)0.0020 (7)0.0055 (7)
C100.0192 (9)0.0211 (9)0.0206 (9)0.0089 (7)0.0036 (7)0.0095 (8)
C110.0207 (9)0.0156 (8)0.0191 (9)0.0061 (7)0.0013 (7)0.0066 (7)
C120.0212 (9)0.0182 (9)0.0236 (9)0.0066 (8)0.0017 (8)0.0085 (8)
C130.0247 (10)0.0163 (9)0.0250 (10)0.0077 (8)0.0045 (8)0.0069 (8)
C140.0397 (12)0.0246 (10)0.0222 (10)0.0140 (9)0.0016 (9)0.0107 (8)
C150.0408 (12)0.0311 (11)0.0229 (10)0.0172 (10)0.0082 (9)0.0138 (9)
C160.0272 (10)0.0246 (10)0.0230 (10)0.0134 (8)0.0045 (8)0.0101 (8)
C170.0321 (11)0.0200 (10)0.0266 (10)0.0093 (9)0.0053 (9)0.0082 (8)
O1W0.0213 (7)0.0359 (8)0.0266 (8)0.0169 (7)0.0065 (6)0.0130 (7)
Geometric parameters (Å, º) top
Cl1—C71.7454 (18)C7—C81.362 (3)
N1—C11.328 (2)C8—C91.423 (2)
N1—C91.368 (2)C8—H80.9500
N2—C31.366 (2)C10—C111.462 (2)
N2—N31.369 (2)C10—H100.9500
N2—H2N0.86 (2)C11—C121.388 (3)
N3—C101.278 (2)C11—C161.401 (3)
N4—C171.147 (3)C12—C131.401 (3)
C1—C21.393 (3)C12—H120.9500
C1—H10.9500C13—C141.386 (3)
C2—C31.389 (3)C13—C171.444 (3)
C2—H20.9500C14—C151.387 (3)
C3—C41.437 (2)C14—H140.9500
C4—C51.417 (3)C15—C161.389 (3)
C4—C91.419 (2)C15—H150.9500
C5—C61.373 (3)C16—H160.9500
C5—H50.9500O1W—H1W0.83 (3)
C6—C71.403 (3)O1W—H2W0.86 (3)
C6—H60.9500
C1—N1—C9116.07 (16)C9—C8—H8120.3
C3—N2—N3119.16 (15)N1—C9—C4123.72 (16)
C3—N2—H2N121.4 (14)N1—C9—C8116.93 (16)
N3—N2—H2N119.4 (14)C4—C9—C8119.35 (16)
C10—N3—N2115.64 (16)N3—C10—C11120.96 (17)
N1—C1—C2125.78 (18)N3—C10—H10119.5
N1—C1—H1117.1C11—C10—H10119.5
C2—C1—H1117.1C12—C11—C16119.17 (17)
C3—C2—C1118.91 (17)C12—C11—C10118.91 (17)
C3—C2—H2120.5C16—C11—C10121.92 (17)
C1—C2—H2120.5C11—C12—C13120.01 (18)
N2—C3—C2122.36 (16)C11—C12—H12120.0
N2—C3—C4119.55 (16)C13—C12—H12120.0
C2—C3—C4118.09 (16)C14—C13—C12120.63 (18)
C5—C4—C9118.81 (16)C14—C13—C17120.38 (17)
C5—C4—C3123.77 (16)C12—C13—C17118.98 (19)
C9—C4—C3117.42 (16)C13—C14—C15119.29 (18)
C6—C5—C4120.96 (17)C13—C14—H14120.4
C6—C5—H5119.5C15—C14—H14120.4
C4—C5—H5119.5C14—C15—C16120.6 (2)
C5—C6—C7119.30 (18)C14—C15—H15119.7
C5—C6—H6120.4C16—C15—H15119.7
C7—C6—H6120.4C15—C16—C11120.31 (19)
C8—C7—C6122.12 (17)C15—C16—H16119.8
C8—C7—Cl1119.72 (14)C11—C16—H16119.8
C6—C7—Cl1118.16 (15)N4—C17—C13178.8 (2)
C7—C8—C9119.46 (16)H1W—O1W—H2W102 (2)
C7—C8—H8120.3
C3—N2—N3—C10179.41 (16)C5—C4—C9—N1179.23 (17)
C9—N1—C1—C21.0 (3)C3—C4—C9—N11.1 (3)
N1—C1—C2—C30.9 (3)C5—C4—C9—C80.6 (3)
N3—N2—C3—C22.4 (3)C3—C4—C9—C8179.14 (16)
N3—N2—C3—C4177.19 (15)C7—C8—C9—N1179.30 (17)
C1—C2—C3—N2179.34 (17)C7—C8—C9—C40.5 (3)
C1—C2—C3—C40.2 (3)N2—N3—C10—C11179.76 (16)
N2—C3—C4—C51.2 (3)N3—C10—C11—C12179.33 (17)
C2—C3—C4—C5179.21 (17)N3—C10—C11—C160.7 (3)
N2—C3—C4—C9178.48 (16)C16—C11—C12—C131.2 (3)
C2—C3—C4—C91.1 (2)C10—C11—C12—C13178.81 (17)
C9—C4—C5—C60.7 (3)C11—C12—C13—C140.4 (3)
C3—C4—C5—C6178.94 (17)C11—C12—C13—C17178.30 (17)
C4—C5—C6—C70.8 (3)C12—C13—C14—C150.4 (3)
C5—C6—C7—C80.8 (3)C17—C13—C14—C15179.10 (19)
C5—C6—C7—Cl1178.69 (14)C13—C14—C15—C160.4 (3)
C6—C7—C8—C90.6 (3)C14—C15—C16—C110.4 (3)
Cl1—C7—C8—C9178.84 (14)C12—C11—C16—C151.2 (3)
C1—N1—C9—C40.0 (3)C10—C11—C16—C15178.82 (19)
C1—N1—C9—C8179.86 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N4i0.83 (3)2.21 (3)2.982 (3)155 (3)
O1w—H2w···N1ii0.86 (3)1.99 (3)2.828 (3)164 (3)
N2—H2n···O1w0.86 (3)2.07 (3)2.917 (2)167 (3)
C5—H5···O1w0.952.393.331 (3)169
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H11ClN4·H2O
Mr324.76
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.7406 (2), 9.8587 (3), 10.2301 (2)
α, β, γ (°)110.8897 (15), 93.4341 (16), 110.6766 (15)
V3)752.93 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.12 × 0.09 × 0.04
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.901, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
14600, 3425, 2902
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.109, 1.10
No. of reflections3425
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N4i0.83 (3)2.21 (3)2.982 (3)155 (3)
O1w—H2w···N1ii0.86 (3)1.99 (3)2.828 (3)164 (3)
N2—H2n···O1w0.86 (3)2.07 (3)2.917 (2)167 (3)
C5—H5···O1w0.952.393.331 (3)169
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAndrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–198.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600–607.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFont, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Disc. 14, 259–272.  CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160–163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618–624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalmer, K. J., Holliday, S. M. & and Brogden, R. N. (1993). Drugs, 45, 430–475.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRidley, R. G. (2002). Nature (London), 415, 686–693.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21–39.  Web of Science PubMed Google Scholar
First citationSloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860.  PubMed CAS Web of Science Google Scholar
First citationSouza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009–1017.  Google Scholar
First citationTanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587–591.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWarshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3239-o3240
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds