organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­methyl­amino)pyridinium 2-(4-hy­droxy­phenyl­diazen­yl)benzoate

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 November 2009; accepted 21 November 2009; online 28 November 2009)

In the title molecular salt, C7H11N2+·C13H9N2O3, the dihedral angle between the benzene rings in the anion is 35.14 (8)°. In the crystal, centrosymmetrically related anions associate via hydrox­yl–carboxyl­ate O—H⋯O hydrogen bonds, resulting in a 24-membered {⋯OC3N2C4OH}2 synthon. The cations are associated with this dimeric unit via pyridinium–carboxyl­ate N—H⋯O hydrogen bonds. Weak C—H⋯O links further consolidate the packing, generating layers.

Related literature

For a discussion of co-crystal terminology, see: Zukerman-Schpector & Tiekink (2008[Zukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233-234.]). For related co-crystallization studies, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Ellis et al. (2009[Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352-1361.]). For related investigations with 2-(4-hydroxy­phenyl­azo)benzoic acid, see: Corlette & Tiekink (2009[Corlette, E. M. & Tiekink, E. R. T. (2009). J. Chem. Crystallogr. 39, 603-606.]); Arman et al. (2009[Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3178-o3179.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11N2+·C13H9N2O3

  • Mr = 364.40

  • Monoclinic, P 21 /n

  • a = 9.240 (4) Å

  • b = 10.924 (4) Å

  • c = 17.598 (7) Å

  • β = 92.002 (8)°

  • V = 1775.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.769, Tmax = 1

  • 12887 measured reflections

  • 4060 independent reflections

  • 3553 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.135

  • S = 1.12

  • 4060 reflections

  • 252 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O2i 0.84 1.77 2.602 (2) 174
N3—H3n⋯O1 0.88 1.78 2.641 (2) 166
C15—H15⋯O2ii 0.95 2.41 3.300 (3) 157
C19—H19a⋯O3iii 0.98 2.58 2.968 (3) 103
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z-1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The motivation of our studies into co-crystal formation (Broker & Tiekink, 2007; Broker et al., 2008; Ellis et al., 2009) revolves around a desire to establish a hierarchy of hydrogen bonding interactions (Etter, 1990). Studies with 2-(4-hydroxyphenylazo)benzoic acid reveal the formation of a co-crystal when co-crystallized with N,N'-bis(4-pyridylmethyl)oxamide (Arman et al., 2009) but a salt was formed with 1,2-(4-pyridyl)ethane (Corlette & Tiekink, 2009); see Zukerman-Schpector & Tiekink (2008) for a discussion on terminology.

In (I), proton transfer from the carboxylic acid group in 2-(4-hydroxyphenylazo)benzoic acid to the pyridine-N1 atom has occurred during co-crystallization from a methanol solution containing stoichiometric amounts of the reagents, Figs 1 and 2. The NMe2 group in the cation is co-planar with the (N3, C14—C18) ring as seen in the C15–C14–N4–C19 torsion angle of -179.04 (17) °. By contrast, the 2-(4-hydroxyphenylazo)benzoate anion is non-planar with the dihedral angle formed between the (C1—C6) and (C8—C13) rings being 35.14 (8) °. There is a twist about the C2–N1 bond as seen in the C1–C2–N1–N2 torsion angle of -148.88 (15) °. Further, the carboxylate group is twisted out of the benzene ring to which it is connected: the C2–C1–C7–O1 torsion angle is -134.83 (17) °. The C7–O1 and C7–O2 bond distances of 1.259 (2) Å and 1.260 (2) Å are indistinguishable, consistent with deprotonation.

The crystal packing in (I) is dominated by O–H···O and N–H···O hydrogen bonding. Centrosymmetrically related anions associate by hydrogen bonds formed between the hydroxyl and O2-carboxylate groups. The association leads to the formation of a 24-membered {···OC3N2C4OH}2 synthon, Fig. 3. Two cations associate with the dimeric aggregate via pyridinium-N···O1-carboxylate hydrogen bonds, Fig. 3. The resulting four component tectons are linked into effectively flat 2-D arrays in the (100) plane via C–H···O contacts, Table 1 and Fig. 4. Links between layers comprise weaker C–H···O contacts, Table 1, and C–H···π interactions: C20–H20a···Cg(N3,C14—C18)i = 2.61 Å, C20···Cg(N2, C14—C18)i = 3.527 (3) Å, with an angle subtended at H20a = 155 °; i: 2 - x, 1 - y, -z.

Related literature top

For discussion on co-crystal terminology, see: Zukerman-Schpector & Tiekink (2008). For related co-crystallization studies, see: Broker & Tiekink (2007); Broker et al. (2008); Ellis et al. (2009). For related investigations with 2-(4-hydroxyphenylazo)benzoic acid, see: Corlette & Tiekink (2009); Arman et al. (2009). For hydrogen-bond motifs, see: Etter (1990).

Experimental top

Orange blocks of (I) were isolated from the co-crystallization of 1:1 molar equivalents of 2-(4-hydroxyphenylazo)benzoic acid and p-dimethylpyridine in a methanol solution.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). A rotating group model was used for the methyl groups. The O– and N– bound H-atoms were located in a difference Fourier map and refined with O–H and N—H restraints of 0.840±0.001 Å and 0.88±0.001, respectively, and with Uiso(H) = nUeq(carrier atom); n = 1.5 for carrier atom = O, and 1.2 for N.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the p-dimethylaminopyridinium cation in (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of the 2-(4-hydroxyphenylazo)benzoate anion in (I), showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. A view of a supramolecular dimer mediated by O—H···O hydrogen bonds (orange dashed lines) highlighting the centrosymmetric 24-membered {···OC3N2C4OH}2 synthon formed between anions, and the attachment of two cations via N—H···O hydrogen bonding (orange dashed lines). Hydrogen atoms not participating in hydrogen bonding are omitted for clarity. Colour code: O, red; N, blue; C, grey; and H, green.
[Figure 4] Fig. 4. A view of the layer in (I) in which the aggregates shown in Fig. 3 are linked via C–H···O contacts (green dashed lines). Hydrogen atoms not participating in intermolecular interactions are omitted for clarity. Colour code: O, red; N, blue; C, grey; and H, green.
4-(Dimethylamino)pyridinium 2-(4-hydroxyphenyldiazenyl)benzoate top
Crystal data top
C7H11N2+·C13H9N2O3F(000) = 768
Mr = 364.40Dx = 1.363 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 7530 reflections
a = 9.240 (4) Åθ = 2.2–40.7°
b = 10.924 (4) ŵ = 0.09 mm1
c = 17.598 (7) ÅT = 98 K
β = 92.002 (8)°Block, orange
V = 1775.2 (12) Å30.35 × 0.25 × 0.15 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4060 independent reflections
Radiation source: fine-focus sealed tube3553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1112
Tmin = 0.769, Tmax = 1k = 1414
12887 measured reflectionsl = 2022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.902P]
where P = (Fo2 + 2Fc2)/3
4060 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
C7H11N2+·C13H9N2O3V = 1775.2 (12) Å3
Mr = 364.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.240 (4) ŵ = 0.09 mm1
b = 10.924 (4) ÅT = 98 K
c = 17.598 (7) Å0.35 × 0.25 × 0.15 mm
β = 92.002 (8)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4060 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3553 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 1Rint = 0.046
12887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.12Δρmax = 0.33 e Å3
4060 reflectionsΔρmin = 0.32 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52078 (13)0.70075 (11)0.20136 (6)0.0231 (3)
O20.51014 (13)0.74136 (12)0.32532 (6)0.0248 (3)
O30.72197 (13)0.39214 (12)0.69176 (7)0.0252 (3)
H3O0.65070.34460.68710.038*
N10.79272 (15)0.65156 (12)0.37743 (8)0.0198 (3)
N20.86170 (15)0.66758 (13)0.43984 (8)0.0213 (3)
N30.65513 (17)0.60354 (14)0.08591 (8)0.0244 (3)
H3N0.60720.64600.11930.029*
N40.86335 (17)0.38316 (14)0.06666 (8)0.0253 (3)
C10.73363 (18)0.77410 (15)0.26482 (9)0.0186 (3)
C20.83605 (18)0.73634 (14)0.32047 (9)0.0187 (3)
C30.97934 (18)0.77841 (15)0.31800 (9)0.0210 (3)
H31.05020.74850.35370.025*
C41.01826 (19)0.86322 (16)0.26387 (9)0.0229 (4)
H41.11510.89240.26310.028*
C50.91532 (19)0.90559 (16)0.21068 (9)0.0228 (4)
H50.94060.96620.17480.027*
C60.77532 (18)0.85902 (15)0.21011 (9)0.0206 (3)
H60.70680.88520.17200.025*
C70.57669 (18)0.73456 (14)0.26416 (9)0.0183 (3)
C80.82313 (18)0.58820 (15)0.49950 (9)0.0200 (3)
C90.8914 (2)0.61107 (19)0.56988 (10)0.0318 (4)
H90.96280.67360.57410.038*
C100.8577 (2)0.5449 (2)0.63363 (10)0.0331 (5)
H100.90580.56180.68110.040*
C110.75306 (18)0.45340 (15)0.62834 (9)0.0204 (3)
C120.6840 (2)0.42969 (16)0.55792 (10)0.0248 (4)
H120.61240.36740.55380.030*
C130.7188 (2)0.49608 (16)0.49430 (9)0.0244 (4)
H130.67150.47890.44670.029*
C140.79702 (18)0.45414 (15)0.01652 (9)0.0213 (3)
C150.82162 (19)0.44292 (16)0.06333 (9)0.0230 (3)
H150.88790.38360.08320.028*
C160.7501 (2)0.51729 (16)0.11111 (10)0.0249 (4)
H160.76750.50840.16440.030*
C170.6284 (2)0.61699 (17)0.01041 (10)0.0261 (4)
H170.56080.67710.00710.031*
C180.6963 (2)0.54610 (17)0.04107 (10)0.0255 (4)
H180.67640.55800.09390.031*
C190.8367 (2)0.39889 (19)0.14862 (10)0.0307 (4)
H19A0.73460.38210.16150.046*
H19B0.89780.34190.17620.046*
H19C0.85990.48310.16300.046*
C200.9618 (2)0.28541 (17)0.04192 (11)0.0289 (4)
H20A1.05540.32070.02580.043*
H20B0.97550.22850.08410.043*
H20C0.92070.24140.00080.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0229 (6)0.0285 (6)0.0177 (5)0.0021 (5)0.0007 (4)0.0009 (5)
O20.0268 (6)0.0295 (7)0.0182 (6)0.0064 (5)0.0033 (5)0.0022 (5)
O30.0237 (6)0.0323 (7)0.0196 (6)0.0071 (5)0.0010 (5)0.0071 (5)
N10.0228 (7)0.0189 (7)0.0177 (6)0.0007 (5)0.0005 (5)0.0003 (5)
N20.0226 (7)0.0223 (7)0.0189 (7)0.0005 (5)0.0002 (5)0.0014 (6)
N30.0289 (8)0.0249 (7)0.0194 (7)0.0001 (6)0.0029 (6)0.0015 (6)
N40.0280 (8)0.0263 (8)0.0214 (7)0.0064 (6)0.0031 (6)0.0024 (6)
C10.0226 (8)0.0186 (7)0.0145 (7)0.0009 (6)0.0008 (6)0.0018 (6)
C20.0233 (8)0.0170 (7)0.0157 (7)0.0012 (6)0.0013 (6)0.0017 (6)
C30.0224 (8)0.0226 (8)0.0181 (7)0.0001 (6)0.0002 (6)0.0014 (6)
C40.0222 (8)0.0256 (8)0.0210 (8)0.0043 (7)0.0017 (6)0.0031 (7)
C50.0288 (9)0.0234 (8)0.0163 (7)0.0045 (7)0.0030 (6)0.0005 (6)
C60.0251 (8)0.0219 (8)0.0146 (7)0.0021 (6)0.0009 (6)0.0003 (6)
C70.0213 (8)0.0167 (7)0.0167 (7)0.0001 (6)0.0006 (6)0.0014 (6)
C80.0216 (8)0.0202 (8)0.0183 (8)0.0001 (6)0.0007 (6)0.0013 (6)
C90.0311 (10)0.0398 (11)0.0241 (9)0.0168 (8)0.0049 (7)0.0059 (8)
C100.0337 (10)0.0447 (11)0.0204 (8)0.0158 (9)0.0081 (7)0.0069 (8)
C110.0204 (8)0.0226 (8)0.0182 (7)0.0010 (6)0.0013 (6)0.0037 (6)
C120.0306 (9)0.0229 (8)0.0208 (8)0.0084 (7)0.0021 (7)0.0005 (7)
C130.0314 (9)0.0244 (8)0.0171 (8)0.0051 (7)0.0037 (7)0.0001 (7)
C140.0232 (8)0.0193 (8)0.0211 (8)0.0010 (6)0.0005 (6)0.0011 (6)
C150.0262 (9)0.0216 (8)0.0211 (8)0.0017 (6)0.0015 (6)0.0049 (7)
C160.0299 (9)0.0256 (8)0.0192 (8)0.0036 (7)0.0008 (7)0.0035 (7)
C170.0285 (9)0.0263 (9)0.0234 (8)0.0040 (7)0.0013 (7)0.0019 (7)
C180.0297 (9)0.0294 (9)0.0172 (8)0.0063 (7)0.0020 (7)0.0008 (7)
C190.0348 (10)0.0374 (10)0.0200 (8)0.0098 (8)0.0000 (7)0.0036 (8)
C200.0311 (10)0.0230 (8)0.0325 (9)0.0077 (7)0.0005 (7)0.0013 (8)
Geometric parameters (Å, º) top
O1—C71.259 (2)C8—C91.393 (2)
O2—C71.260 (2)C8—C131.394 (2)
O3—C111.341 (2)C9—C101.379 (3)
O3—H3O0.8401C9—H90.9500
N1—N21.263 (2)C10—C111.392 (2)
N1—C21.432 (2)C10—H100.9500
N2—C81.417 (2)C11—C121.398 (2)
N3—C171.351 (2)C12—C131.381 (2)
N3—C161.352 (2)C12—H120.9500
N3—H3N0.8801C13—H130.9500
N4—C141.339 (2)C14—C151.421 (2)
N4—C201.459 (2)C14—C181.426 (2)
N4—C191.465 (2)C15—C161.358 (3)
C1—C21.400 (2)C15—H150.9500
C1—C61.401 (2)C16—H160.9500
C1—C71.513 (2)C17—C181.362 (2)
C2—C31.404 (2)C17—H170.9500
C3—C41.385 (2)C18—H180.9500
C3—H30.9500C19—H19A0.9800
C4—C51.390 (2)C19—H19B0.9800
C4—H40.9500C19—H19C0.9800
C5—C61.390 (2)C20—H20A0.9800
C5—H50.9500C20—H20B0.9800
C6—H60.9500C20—H20C0.9800
C11—O3—H3O114.6C11—C10—H10120.1
N2—N1—C2111.98 (14)O3—C11—C10118.12 (15)
N1—N2—C8115.30 (14)O3—C11—C12122.74 (16)
C17—N3—C16119.54 (15)C10—C11—C12119.15 (15)
C17—N3—H3N121.3C13—C12—C11120.58 (16)
C16—N3—H3N119.0C13—C12—H12119.7
C14—N4—C20121.47 (15)C11—C12—H12119.7
C14—N4—C19121.06 (15)C12—C13—C8120.40 (16)
C20—N4—C19117.45 (15)C12—C13—H13119.8
C2—C1—C6118.72 (15)C8—C13—H13119.8
C2—C1—C7123.06 (14)N4—C14—C15122.72 (16)
C6—C1—C7118.07 (14)N4—C14—C18121.14 (15)
C1—C2—C3119.81 (15)C15—C14—C18116.14 (15)
C1—C2—N1118.78 (15)C16—C15—C14119.77 (16)
C3—C2—N1121.37 (15)C16—C15—H15120.1
C4—C3—C2120.54 (16)C14—C15—H15120.1
C4—C3—H3119.7N3—C16—C15122.57 (16)
C2—C3—H3119.7N3—C16—H16118.7
C3—C4—C5119.84 (16)C15—C16—H16118.7
C3—C4—H4120.1N3—C17—C18121.32 (16)
C5—C4—H4120.1N3—C17—H17119.3
C6—C5—C4119.85 (16)C18—C17—H17119.3
C6—C5—H5120.1C17—C18—C14120.67 (16)
C4—C5—H5120.1C17—C18—H18119.7
C5—C6—C1121.05 (15)C14—C18—H18119.7
C5—C6—H6119.5N4—C19—H19A109.5
C1—C6—H6119.5N4—C19—H19B109.5
O1—C7—O2124.71 (16)H19A—C19—H19B109.5
O1—C7—C1117.02 (14)N4—C19—H19C109.5
O2—C7—C1118.22 (14)H19A—C19—H19C109.5
C9—C8—C13118.59 (16)H19B—C19—H19C109.5
C9—C8—N2115.54 (15)N4—C20—H20A109.5
C13—C8—N2125.76 (15)N4—C20—H20B109.5
C10—C9—C8121.40 (17)H20A—C20—H20B109.5
C10—C9—H9119.3N4—C20—H20C109.5
C8—C9—H9119.3H20A—C20—H20C109.5
C9—C10—C11119.87 (17)H20B—C20—H20C109.5
C9—C10—H10120.1
C2—N1—N2—C8179.04 (13)N2—C8—C9—C10176.36 (19)
C6—C1—C2—C33.6 (2)C8—C9—C10—C110.2 (3)
C7—C1—C2—C3179.01 (15)C9—C10—C11—O3179.18 (18)
C6—C1—C2—N1178.65 (14)C9—C10—C11—C120.2 (3)
C7—C1—C2—N13.2 (2)O3—C11—C12—C13179.40 (17)
N2—N1—C2—C1148.88 (15)C10—C11—C12—C130.0 (3)
N2—N1—C2—C333.4 (2)C11—C12—C13—C80.3 (3)
C1—C2—C3—C44.2 (2)C9—C8—C13—C120.3 (3)
N1—C2—C3—C4178.05 (15)N2—C8—C13—C12175.72 (17)
C2—C3—C4—C51.1 (2)C20—N4—C14—C152.5 (3)
C3—C4—C5—C62.6 (3)C19—N4—C14—C15179.04 (17)
C4—C5—C6—C13.2 (3)C20—N4—C14—C18177.34 (17)
C2—C1—C6—C50.1 (2)C19—N4—C14—C181.1 (3)
C7—C1—C6—C5175.56 (15)N4—C14—C15—C16179.58 (17)
C2—C1—C7—O1134.83 (17)C18—C14—C15—C160.3 (2)
C6—C1—C7—O149.7 (2)C17—N3—C16—C150.4 (3)
C2—C1—C7—O247.4 (2)C14—C15—C16—N30.3 (3)
C6—C1—C7—O2128.09 (17)C16—N3—C17—C180.6 (3)
N1—N2—C8—C9175.62 (16)N3—C17—C18—C140.7 (3)
N1—N2—C8—C130.5 (2)N4—C14—C18—C17179.35 (17)
C13—C8—C9—C100.1 (3)C15—C14—C18—C170.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.841.772.602 (2)174
N3—H3n···O10.881.782.641 (2)166
C15—H15···O2ii0.952.413.300 (3)157
C19—H19a···O3iii0.982.582.968 (3)103
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC7H11N2+·C13H9N2O3
Mr364.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)98
a, b, c (Å)9.240 (4), 10.924 (4), 17.598 (7)
β (°) 92.002 (8)
V3)1775.2 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.769, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
12887, 4060, 3553
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.12
No. of reflections4060
No. of parameters252
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.32

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.841.772.602 (2)174
N3—H3n···O10.881.782.641 (2)166
C15—H15···O2ii0.952.413.300 (3)157
C19—H19a···O3iii0.982.582.968 (3)103
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x, y, z1.
 

References

First citationArman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3178–o3179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationCorlette, E. M. & Tiekink, E. R. T. (2009). J. Chem. Crystallogr. 39, 603–606.  Web of Science CSD CrossRef CAS Google Scholar
First citationEllis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233–234.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds