Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Chloro- N^2 , N^4 -di-*p*-tolyl-1,3,5-triazine-2,4-diamine dimethylformamide monosolvate

Fangfang Jian,^a* Hailian Xiao^b and Yongxiang Wei^b

^aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and ^bNew Materials & Function, Coordination Chemistry Laboratory, Qingdao University of Science & Technology, Qingdao, 266042, People's Republic of China

Correspondence e-mail: xiaohailian@163.com

Received 12 November 2009; accepted 20 November 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.146; data-to-parameter ratio = 15.1.

The title compound, $C_{17}H_{16}CIN_5 \cdot C_3H_7NO$, was prepared by reaction of *p*-toluidine with 2,4,6-trichloro-1,3,5-triazine at room temperature. The dihedral angles between the triazine ring and the pendant rings are 3.61 (12) and 53.11 (12)°. An intramolecular C-H···N interaction occurs. The packing is stabilized by N-H···N and N-H···O hydrogen bonds and C-H··· π and π - π [centroid–centroid distance = 3.763 (1) Å] interactions.

Related literature

For the use of 1,3,5-triazine derivatives as starting materials for drugs and as light stabilisers, see: Azev *et al.* (2003); Steffensen and Simanek (2003). For related structures, see: Zeng *et al.* (2005*a*,*b*); Jian *et al.* (2007).

Experimental

Crystal data C₁₇H₁₆ClN₅·C₃H₇NO

 $M_r = 398.89$

Triclinic, $P\overline{1}$ a = 6.821 (2) Å b = 10.980 (2) Å c = 14.060 (3) Å $\alpha = 91.13$ (3)° $\beta = 94.29$ (2)° $\gamma = 98.32$ (4)°

Data collection

Enraf–Nonius CAD-4 diffractometer Absorption correction: none 5740 measured reflections 3832 independent reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.050 & 254 \text{ parameters} \\ wR(F^2) &= 0.146 & H\text{-atom parameters constrained} \\ S &= 1.02 & \Delta\rho_{\text{max}} = 0.44 \text{ e } \text{\AA}^{-3} \\ 3832 \text{ reflections} & \Delta\rho_{\text{min}} = -0.24 \text{ e } \text{\AA}^{-3} \end{split}$$

V = 1038.4 (4) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.18 \; \mathrm{mm}$

3 standard reflections

every 100 reflections

intensity decay: none

2786 reflections with $I > 2\sigma(I)$

 $\mu = 0.21 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int} = 0.016$

7 - 2

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdotsO1$ $N2-H2A\cdotsN5^{i}$	0.86	2.06	2.923 (3)	177
	0.86	2.24	3.081 (3)	168
$C4 - H4A \cdots N3$	0.93	2.30	2.905 (3)	122
$C1 - H1D \cdots Cg1^{ii}$	0.96	2.86	3.653 (4)	145

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x, -y + 1, -z. Cg1 is the centroid of the C2–C7 ring.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXL97*; software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors would like to thank the Natural Science Foundation of Shandong Province (Nos. Y2006B08 and Z2007B01).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2590).

References

Azev, Y. A., Dulcks, T. & Gabel, D. (2003). Tetrahedron Lett. 44, 8689–8691. Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Jian, F.-F., Wei, Y.-X., Huang, L.-H. & Ren, X.-Y. (2007). Acta Cryst. E63, 04937.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steffensen, M. B. & Simanek, E. E. (2003). Org. Lett. 5, 2359-2361.
- Zeng, T., Dong, C.-M. & Shu, X.-G. (2005a). Acta Cryst. E61, o2334-o2335.
- Zeng, T., Dong, C.-M., Shu, X.-G., Li, J.-S. & Huang, P.-M. (2005b). Acta Cryst. E61, 02211–02212.

supporting information

Acta Cryst. (2009). E65, o3212 [doi:10.1107/S1600536809049885]

6-Chloro-*N*²,*N*⁴-di-*p*-tolyl-1,3,5-triazine-2,4-diamine dimethylformamide monosolvate

Fangfang Jian, Hailian Xiao and Yongxiang Wei

S1. Comment

1,3,5-Triazine derivatives are of great interest due to their importance as starting materials for drugs and light stabilizers (Azev *et al.*, 2003; Steffensen & Simanek, 2003; Zeng *et al.*, 2005a). Our group has reported the structure of 1,3,5-triazine derivative (Jian *et al.*, 2007). Herein, we report the synthesis and structure of the title compound.

The crystal structure consists of the host 1,3,5-triazine derivative and a guest DMF solvate molecule. The bond lengths and angles are agreement with those found in similar compounds (Zeng *et al.*, 2005b; Jian *et al.*, 2007). The dihedral angles formed by triazine ring and two phenyl ring are 3.61, 53.11° for C2—C7 and C9—C14, respectively. They are compared to those found in the compound that reported by our group before (Jian *et al.*, 2007). The dihedral angle between two phenyl ring is 51.61 (2)° which is larger than that of 35.8 (1)° found in aforementioned compound.

It is interesting that there exists C—H··· π and π - π interactions in the lattice [C1···Cg1=3.653 (4) Å, C1— H1D···Cg1=145.1 (1)°, Cg1···Cg2=3.763 (1) Å, Cg1 and Cg2 refer to phenyl ring C2—C7 and triazine ring, respectively]. In addition there exists N—H···O, N—H···N, C—H···N and C—H···O intra and intermolecular hydrogen bond interactions (see Table 1). All the above interactions stabilize the whole structure.

S2. Experimental

The title compound was synthesized by the reaction of 2,4,6-trichloro-1,3,5-triazine (0.02 mol) and p-toluidine (0.04 mol) in acetone solvate (50 ml) under stirring for 5 h at room temperature. Single crystals suitable for x-ray measurements were obtained by recrystallization from DMF at room temperature.

S3. Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.96 Å, N— H distance = 0.86Å and with $U_{iso} = 1.2-1.5U_{eq}$.

Figure 1

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

6-Chloro-N²,N⁴-di-p-tolyl-1,3,5-triazine-2,4-diamine dimethylformamide monosolvate

Crystal	data
---------	------

C₁₇H₁₆ClN₅·C₃H₇NO $M_r = 398.89$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.821 (2) Å b = 10.980 (2) Å c = 14.060 (3) Å a = 91.13 (3)° $\beta = 94.29$ (2)° $\gamma = 98.32$ (4)° V = 1038.4 (4) Å³

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 5740 measured reflections 3832 independent reflections 2786 reflections with $I > 2\sigma(I)$ Z = 2 F(000) = 420 $D_x = 1.276 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 4-14^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 295 KBlock, colorless $0.25 \times 0.20 \times 0.18 \text{ mm}$

 $R_{int} = 0.016$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 13$ $l = -17 \rightarrow 16$ 3 standard reflections every 100 reflections intensity decay: none Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.146$	$w = 1/[\sigma^2(F_o^2) + (0.0677P)^2 + 0.4334P]$
S = 1.02	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3832 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
254 parameters	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.24 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.008 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.01901 (10)	0.18643 (6)	0.38436 (5)	0.0657 (3)	
N1	0.4183 (3)	0.28803 (18)	0.21951 (15)	0.0525 (5)	
H1A	0.4189	0.2155	0.1954	0.063*	
N2	0.7855 (3)	0.58018 (17)	0.42644 (15)	0.0493 (5)	
H2A	0.8873	0.5960	0.4671	0.059*	
N3	0.5954 (3)	0.44126 (17)	0.32082 (13)	0.0455 (5)	
N4	0.7002 (3)	0.24467 (17)	0.29872 (14)	0.0499 (5)	
N5	0.8869 (3)	0.39225 (17)	0.40810 (14)	0.0448 (5)	
C1	-0.2699 (4)	0.4869 (3)	0.0743 (2)	0.0787 (9)	
H1B	-0.2699	0.5683	0.1006	0.118*	
H1C	-0.3862	0.4341	0.0910	0.118*	
H1D	-0.2703	0.4900	0.0061	0.118*	
C2	-0.0867 (4)	0.4374 (3)	0.11384 (19)	0.0598 (7)	
C3	0.0514 (4)	0.5047 (3)	0.1770 (2)	0.0669 (8)	
H3A	0.0313	0.5832	0.1962	0.080*	
C4	0.2206 (4)	0.4597 (2)	0.2135 (2)	0.0634 (7)	
H4A	0.3114	0.5081	0.2563	0.076*	
C5	0.2546 (3)	0.3441 (2)	0.18675 (17)	0.0481 (6)	
C6	0.1171 (4)	0.2758 (3)	0.1229 (2)	0.0639(7)	
H6A	0.1373	0.1975	0.1034	0.077*	
C7	-0.0501 (4)	0.3218 (3)	0.0875 (2)	0.0706 (8)	
H7A	-0.1409	0.2735	0.0446	0.085*	
C8	0.3217 (5)	0.9718 (3)	0.3723 (2)	0.0756 (9)	

H8A	0.4072	1.0452	0.3573	0.113*
H8B	0.2618	0.9857	0.4304	0.113*
H8C	0.2197	0.9512	0.3214	0.113*
C9	0.4419 (4)	0.8673 (2)	0.38440 (18)	0.0528 (6)
C10	0.6424 (4)	0.8851 (2)	0.3756 (2)	0.0600(7)
H10A	0.7052	0.9628	0.3612	0.072*
C11	0.7532 (4)	0.7902 (2)	0.3877 (2)	0.0561 (7)
H11A	0.8889	0.8043	0.3804	0.067*
C12	0.6654 (3)	0.6753 (2)	0.41038 (16)	0.0437 (5)
C13	0.4652 (3)	0.6554 (2)	0.41948 (19)	0.0516 (6)
H13A	0.4028	0.5778	0.4342	0.062*
C14	0.3564 (4)	0.7512 (2)	0.4066 (2)	0.0575 (7)
H14A	0.2204	0.7367	0.4132	0.069*
C15	0.7526 (3)	0.4684 (2)	0.38338 (16)	0.0417 (5)
C16	0.5731 (3)	0.3278 (2)	0.28167 (16)	0.0454 (5)
C17	0.8473 (3)	0.2861 (2)	0.36048 (17)	0.0458 (5)
O1	0.4123 (5)	0.0448 (2)	0.1300 (2)	0.1152 (10)
N6	0.6354 (6)	-0.0890 (3)	0.1270 (2)	0.0983 (10)
C18	0.5910 (8)	0.0213 (4)	0.1365 (3)	0.1098 (14)
H18A	0.6940	0.0864	0.1484	0.132*
C19	0.8451 (8)	-0.1067 (5)	0.1350 (4)	0.1468 (19)
H19A	0.9276	-0.0283	0.1452	0.220*
H19B	0.8761	-0.1452	0.0772	0.220*
H19C	0.8689	-0.1582	0.1878	0.220*
C20	0.4959 (8)	-0.1957 (4)	0.1119 (4)	0.168 (3)
H20A	0.3643	-0.1739	0.1077	0.252*
H20B	0.5103	-0.2497	0.1640	0.252*
H20C	0.5176	-0.2367	0.0535	0.252*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0605 (4)	0.0572 (4)	0.0833 (5)	0.0336 (3)	-0.0152 (3)	-0.0046 (3)
N1	0.0481 (11)	0.0474 (11)	0.0608 (13)	0.0129 (9)	-0.0134 (10)	-0.0071 (9)
N2	0.0414 (10)	0.0435 (11)	0.0627 (13)	0.0158 (8)	-0.0145 (9)	-0.0046 (9)
N3	0.0401 (10)	0.0470 (11)	0.0500 (11)	0.0144 (8)	-0.0077 (8)	-0.0011 (9)
N4	0.0499 (11)	0.0467 (11)	0.0547 (12)	0.0185 (9)	-0.0073 (9)	-0.0018 (9)
N5	0.0382 (10)	0.0454 (11)	0.0525 (11)	0.0159 (8)	-0.0046 (8)	0.0008 (9)
C1	0.0460 (15)	0.104 (2)	0.088 (2)	0.0215 (15)	-0.0084 (14)	0.0248 (18)
C2	0.0411 (14)	0.0794 (19)	0.0597 (16)	0.0121 (13)	-0.0018 (12)	0.0200 (14)
C3	0.0584 (16)	0.0703 (18)	0.0745 (19)	0.0263 (14)	-0.0100 (14)	-0.0014 (14)
C4	0.0524 (15)	0.0630 (16)	0.0737 (18)	0.0198 (12)	-0.0215 (13)	-0.0087 (13)
C5	0.0402 (12)	0.0550 (14)	0.0486 (13)	0.0098 (10)	-0.0051 (10)	0.0043 (11)
C6	0.0561 (16)	0.0622 (16)	0.0702 (18)	0.0093 (13)	-0.0158 (13)	-0.0013 (13)
C7	0.0514 (16)	0.078 (2)	0.076 (2)	0.0039 (14)	-0.0219 (14)	0.0047 (15)
C8	0.0744 (19)	0.0564 (16)	0.102 (2)	0.0328 (14)	-0.0008 (17)	0.0082 (15)
C9	0.0532 (14)	0.0456 (13)	0.0621 (16)	0.0195 (11)	-0.0026 (12)	0.0029 (11)
C10	0.0544 (15)	0.0403 (13)	0.0832 (19)	0.0050 (11)	-0.0071 (13)	0.0090 (12)

C11	0.0362 (12)	0.0514 (14)	0.0801 (18)	0.0088 (10)	-0.0053 (12)	0.0038 (12)
C12	0.0410 (12)	0.0413 (12)	0.0499 (13)	0.0146 (9)	-0.0064 (10)	-0.0004 (10)
C13	0.0437 (13)	0.0444 (13)	0.0686 (16)	0.0110 (10)	0.0067 (11)	0.0083 (11)
C14	0.0425 (13)	0.0582 (15)	0.0762 (18)	0.0186 (11)	0.0098 (12)	0.0092 (13)
C15	0.0361 (11)	0.0441 (12)	0.0465 (13)	0.0128 (9)	-0.0003 (9)	0.0032 (10)
C16	0.0423 (12)	0.0470 (13)	0.0480 (13)	0.0139 (10)	-0.0027 (10)	0.0024 (10)
C17	0.0425 (12)	0.0469 (13)	0.0505 (14)	0.0174 (10)	-0.0013 (10)	0.0033 (10)
01	0.145 (3)	0.0866 (18)	0.118 (2)	0.0498 (18)	-0.0214 (19)	-0.0214 (15)
N6	0.139 (3)	0.082 (2)	0.0782 (19)	0.0462 (19)	-0.0147 (18)	-0.0233 (15)
C18	0.160 (4)	0.078 (3)	0.089 (3)	0.018 (3)	-0.007 (3)	-0.014 (2)
C19	0.138 (4)	0.179 (5)	0.135 (4)	0.067 (4)	0.008 (3)	-0.026 (4)
C20	0.182 (5)	0.097 (3)	0.208 (6)	0.013 (4)	-0.058 (5)	-0.063 (4)

Geometric parameters (Å, °)

C17—C11	1.734 (2)	C11—C12	1.370 (3)	
N1—H1A	0.8600	C11—H11A	0.9300	
N2—H2A	0.8600	C12—C13	1.367 (3)	
C1—H1B	0.9600	C12—N2	1.430 (3)	
C1—H1C	0.9600	C13—C14	1.380 (3)	
C1—H1D	0.9600	C13—H13A	0.9300	
C2—C3	1.368 (4)	C14—H14A	0.9300	
С2—С7	1.377 (4)	C15—N3	1.329 (3)	
C2—C1	1.507 (3)	C15—N2	1.339 (3)	
C3—C4	1.387 (3)	C15—N5	1.358 (3)	
С3—НЗА	0.9300	C16—N1	1.335 (3)	
C4—C5	1.373 (3)	C16—N3	1.336 (3)	
C4—H4A	0.9300	C16—N4	1.359 (3)	
C5—C6	1.375 (3)	C17—N4	1.300 (3)	
C5—N1	1.403 (3)	C17—N5	1.315 (3)	
С6—С7	1.376 (4)	O1—C18	1.279 (5)	
С6—Н6А	0.9300	N6—C18	1.297 (5)	
С7—Н7А	0.9300	N6—C20	1.400 (5)	
С8—С9	1.509 (3)	N6—C19	1.468 (5)	
C8—H8A	0.9600	C18—H18A	0.9300	
C8—H8B	0.9600	C19—H19A	0.9600	
C8—H8C	0.9600	C19—H19B	0.9600	
C9—C10	1.369 (4)	C19—H19C	0.9600	
C9—C14	1.375 (4)	C20—H20A	0.9600	
C10—C11	1.379 (3)	C20—H20B	0.9600	
C10—H10A	0.9300	C20—H20C	0.9600	
N4-C17-Cl1	115.32 (17)	C13—C12—N2	121.5 (2)	
N5-C17-Cl1	114.56 (17)	C11—C12—N2	119.4 (2)	
C2—C1—H1B	109.5	C12—C13—C14	119.5 (2)	
C2—C1—H1C	109.5	C12—C13—H13A	120.2	
H1B—C1—H1C	109.5	C14—C13—H13A	120.2	
C2—C1—H1D	109.5	C9—C14—C13	122.3 (2)	

H1B—C1—H1D	109.5	C9—C14—H14A	118.8
H1C—C1—H1D	109.5	C13—C14—H14A	118.8
C3—C2—C7	116.7 (2)	N3—C15—N2	118.55 (19)
C3—C2—C1	121.9 (3)	N3—C15—N5	125.7 (2)
C7—C2—C1	121.4 (3)	N2—C15—N5	115.77 (19)
C2—C3—C4	122.2 (3)	N1—C16—N3	120.5 (2)
С2—С3—НЗА	118.9	N1—C16—N4	114.4 (2)
С4—С3—НЗА	118.9	N3—C16—N4	125.1 (2)
C5—C4—C3	120.4 (3)	N4—C17—N5	130.1 (2)
C5—C4—H4A	119.8	C16—N1—C5	131.2 (2)
C3—C4—H4A	119.8	C16—N1—H1A	114.4
C4—C5—C6	117.9 (2)	C5—N1—H1A	114.4
C4—C5—N1	125.7 (2)	C15—N2—C12	125.31 (18)
C6—C5—N1	116.4 (2)	C15—N2—H2A	117.3
C5—C6—C7	120.9 (3)	C12—N2—H2A	117.3
С5—С6—Н6А	119.5	C15—N3—C16	114.60 (19)
С7—С6—Н6А	119.5	C17—N4—C16	112.54 (19)
C6—C7—C2	121.9 (3)	C17—N5—C15	111.89 (19)
С6—С7—Н7А	119.1	C18—N6—C20	124.6 (4)
С2—С7—Н7А	119.1	C18—N6—C19	119.1 (4)
С9—С8—Н8А	109.5	C20—N6—C19	116.2 (4)
С9—С8—Н8В	109.5	O1—C18—N6	123.1 (4)
H8A—C8—H8B	109.5	O1—C18—H18A	118.5
С9—С8—Н8С	109.5	N6—C18—H18A	118.5
H8A—C8—H8C	109.5	N6—C19—H19A	109.5
H8B—C8—H8C	109.5	N6—C19—H19B	109.5
C10—C9—C14	117.1 (2)	H19A—C19—H19B	109.5
С10—С9—С8	121.1 (2)	N6—C19—H19C	109.5
C14—C9—C8	121.8 (2)	H19A—C19—H19C	109.5
C9—C10—C11	121.3 (2)	H19B—C19—H19C	109.5
C9—C10—H10A	119.4	N6—C20—H20A	109.5
C11—C10—H10A	119.4	N6—C20—H20B	109.5
C12—C11—C10	120.7 (2)	H20A-C20-H20B	109.5
C12—C11—H11A	119.7	N6-C20-H20C	109.5
C10-C11-H11A	119.7	H20A—C20—H20C	109.5
C13—C12—C11	119.1 (2)	H20B—C20—H20C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N1—H1A…O1	0.86	2.06	2.923 (3)	177
$N2$ — $H2A$ ··· $N5^{i}$	0.86	2.24	3.081 (3)	168
C4—H4 <i>A</i> …N3	0.93	2.30	2.905 (3)	122
C20—H20A…O1	0.96	2.39	2.792 (5)	105
C1— $H1D$ ···· $Cg1$ ⁱⁱ	0.96	2.86	3.653 (4)	145

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y+1, -z.