metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{µ-4'-[4-(quinolin-8-yloxymethyl)phenyl]-2,2':6',2"-terpyridine}disilver(I) bis(perchlorate) dimethylformamide disolvate

Chang-Juan Chen, Feng-Neng Liu, Ai-Jiang Zhang, Liang-Wei Zhang and Xiang Liu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: liuxiang@lzu.edu.cn

Received 28 September 2009; accepted 6 November 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.118; data-to-parameter ratio = 19.0.

In the binuclear title complex, $[Ag_2(C_{31}H_{22}N_4O)_2](ClO_4)_2$ ·-2C₃H₇NO, the Ag^I atom is pentacoordinated by three N atoms from the tridentate chelating terpyridyl group and by one N atom and one O atom from the quinolin-8-yloxy group in a distorted square-pyramidal geometry with the O atom at the apical position. The centrosymmetric complex cation involves intramolecular π - π stacking interactions [centroid–centroid distance = 3.862 (4) Å] between the central pyridine and benzene rings. In the crystal structure, intermolecular C– H···O hydrogen bonds result in the formation of a supramolecular network.

Related literature

For applications of 2,2':6',2''-terpyridine in supramolecular frameworks and functional materials, see: Andres & Schubert (2004); Constable *et al.* (2005); Thompson (1997); Ziener *et al.* (2000). For the ligand synthesis, see: Chow *et al.* (2006). For related structures, see: Hou & Li (2005).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Ag}_2(\mathrm{C}_{31}\mathrm{H}_{22}\mathrm{N}_4\mathrm{O})_2](\mathrm{ClO}_4)_{2}^{,-} & \beta = 96.767~(8)^{\circ} \\ & 2\mathrm{C}_3\mathrm{H}_7\mathrm{NO} & V = 3244.0~(9)~\text{\AA}^3 \\ & M_r = 1493.88 & Z = 2 \\ & \mathrm{Monoclinic}, P2_1/c & \mathrm{Mo}~\mathrm{K}\alpha~\mathrm{radiation} \\ & a = 10.0552~(16)~\text{\AA} & \mu = 0.76~\mathrm{mm}^{-1} \\ & b = 10.9548~(18)~\text{\AA} & T = 296~\mathrm{K} \\ & c = 29.657~(5)~\text{\AA} & 0.22~\times~0.20~\mathrm{xmm} \end{split}$$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.847, T_{max} = 0.860

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	426 parameters
$wR(F^2) = 0.118$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^{-3}$
8077 reflections	$\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$

20993 measured reflections

 $R_{\rm int} = 0.020$

8077 independent reflections 5406 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Ag1-O1	2.5995 (19)	Ag1-N3	2.414 (3)
Ag1-N1	2.434 (3)	Ag1-N4	2.275 (2)
Ag1-N2	2.3572 (19)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C4-H4···O3 ⁱ	0.93	2.57	3.450 (5)	158
$C12-H12\cdots O5^{ii}$	0.93	2.60	3.344 (5)	138
C28−H28···O6 ⁱⁱⁱ	0.93	2.37	3.250 (5)	158
C29−H29···O4	0.93	2.57	3.252 (6)	130
Symmetry codes: ($-x, y - \frac{1}{2}, -z + \frac{3}{2}$	i) $-x + 1, -$	y, -z + 1; (ii) $-x+1, -y+1$	1, -z + 1; (iii)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the Research Foundation for Young Teachers Possessing a Doctoral Degree of Lanzhou University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2238).

References

- Andres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043-1068.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chow, H. S., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). *Dalton Trans.* pp. 2881–2890.

Constable, E. C., Housecroft, C. H., Neuburger, M., Schaffner, S. & Shardlow, E. J. (2005). *CrystEngComm*, **7**, 599–602.

- Hou, L. & Li, D. (2005). Inorg. Chem. Commun. 8, 128-130.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thompson, A. M. W. C. (1997). Coord. Chem. Rev. 160, 1-52.
- Ziener, U., Breuning, E., Lehn, J.-M., Wegelius, E., Rissanen, K., Baum, G., Fenske, D. & Vaughan, G. (2000). Chem. Eur. J. 6, 4132–4139.

supporting information

Acta Cryst. (2009). E65, m1674-m1675 [doi:10.1107/S1600536809046832]

Bis{*µ*-4'-[4-(quinolin-8-yloxymethyl)phenyl]-2,2':6',2''-terpyridine}disilver(I) bis(perchlorate) dimethylformamide disolvate

Chang-Juan Chen, Feng-Neng Liu, Ai-Jiang Zhang, Liang-Wei Zhang and Xiang Liu

S1. Comment

2,2':6',2"-Terpyridine is well known for its applications in the synthesis of supramolecular frameworks and functional materials (Andres & Schubert, 2004; Constable *et al.*, 2005; Thompson, 1997; Ziener *et al.*, 2000). Therefore, it is necessary to further widen the system of multifunctional terpyridyl derivates complexes. Herein we report the synthesis and structure of an Ag^I complex with a new ligand 4'-[4'-(8-oxyqulinoline)benzyl]-2,2':6',2"-terpyridine.

The complex cation of the title compound has a twisted box structure formed by two ligands bridging two Ag¹ atoms. The asymmetric unit consists of a half of the cation, one perchlorate anion and one dimethylformamide solvent molecule. As shown Fig. 1, the two ligands are arranged in a head-to-tail fashion. The Ag¹ atom is pentacoordinated by three N atoms of the tridentate chelating terpyridyl group and by one N and one O atoms from the quinolin-8-yloxy group [Ag— N = 2.275 (2)–2.434 (3) Å and Ag—O = 2.5995 (19) Å] (Table 1). The Ag···Ag distance is 10.744 (6) Å in the dimeric complex cation. The plane of the 4'-phenyl-2,2':6',2''-terpyridine group is almost perpendicular to that of the quinoline group, with a dihedral angel of 79.96 (1)°. The complex cation involves π - π stacking interactions [centroid–centroid distance = 3.862 (4) Å] between the central pyridine rings and the phenyl rings. In the crystal structure, intermolecular C —H···O hydrogen bonds result in the formation of a supramolecular network (Table 2 and Fig. 2).

S2. Experimental

The ligand was synthesized according to the literature (Chow *et al.*, 2006). A solution of $AgClO_4(23.72 \text{ mg}, 0.10 \text{ mmol})$ in CH₃OH (10 ml) was added to a solution of the ligand (46.6 mg, 0.10 mmol) in CHCl₃ (10 ml) with stirring. The brown precipitate was collected by filtration and washed sequentially with 10 ml CH₃OH and CHCl₃. Brown crystals suitable for X-ray structure determination were obtained by slow diffusion of diethyl ether into the DMF solution of the product in several days.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (CH₂) and 0.96 (CH₃) Å and with $U_{iso} = 1.2(1.5 \text{ for methyl})U_{eq}(C)$.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) 2 - z, 1 - y, 1 - z.]

Figure 2

Packing diagram along the c axis of the title compound. Hydrogen bonds are shown as dashed lines.

$Bis{\mu-4'-[4-(quinolin-8-yloxymethyl)phenyl]-2,2':6',2''- terpyridine}disilver(I) bis(perchlorate) dimethylformamide disolvate$

Crystal data	
$[Ag_2(C_{31}H_{22}N_4O)_2](ClO_4)_2 \cdot 2C_3H_7NO$	$V = 3244.0 (9) \text{ Å}^3$
$M_r = 1493.88$	Z = 2
Monoclinic, $P2_1/c$	F(000) = 1520
Hall symbol: -P 2ybc	$D_{\rm x} = 1.529 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.0552 (16) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.9548 (18) Å	Cell parameters from 6845 reflections
c = 29.657 (5) Å	$\theta = 2.3 - 28.6^{\circ}$
$\beta = 96.767 \ (8)^{\circ}$	$\mu = 0.76 \text{ mm}^{-1}$

T = 296 KBlock, yellow Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube

Radiation source: fine-focus sealed tube	5406 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
φ and ω scans	$\theta_{\rm max} = 28.7^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Sheldrick, 1996)	$k = -14 \rightarrow 14$
$T_{\min} = 0.847, \ T_{\max} = 0.860$	$l = -40 \rightarrow 28$

Refinement

Tejmement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.118$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
8077 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0551P)^2 + 1.1422P]$
426 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.67$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

 $0.22\times0.20\times0.20~mm$

20993 measured reflections

8077 independent reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Agl	0.60078 (2)	0.42357 (2)	0.602143 (7)	0.06913 (11)	
C1	0.6898 (5)	0.1295 (4)	0.61912 (13)	0.1029 (14)	
H1	0.6456	0.1402	0.6447	0.123*	
C2	0.7329 (5)	0.0155 (4)	0.60987 (14)	0.1074 (15)	
H2	0.7210	-0.0493	0.6293	0.129*	
C3	0.7939 (4)	-0.0024 (3)	0.57173 (14)	0.0904 (12)	
H3	0.8235	-0.0795	0.5645	0.108*	
C4	0.8109 (3)	0.0965 (3)	0.54406 (11)	0.0698 (9)	
H4	0.8512	0.0863	0.5176	0.084*	
C5	0.7678 (3)	0.2102 (2)	0.55580 (9)	0.0534 (6)	
C6	0.7810(2)	0.3201 (2)	0.52706 (8)	0.0463 (5)	
C7	0.8646 (2)	0.3213 (2)	0.49286 (8)	0.0487 (6)	
H7	0.9159	0.2530	0.4880	0.058*	
C8	0.8716 (2)	0.4248 (2)	0.46597 (7)	0.0412 (5)	
C9	0.7944 (2)	0.5249 (2)	0.47579 (8)	0.0459 (5)	
H9	0.7971	0.5964	0.4590	0.055*	
C10	0.7135 (2)	0.5180 (2)	0.51051 (8)	0.0432 (5)	
C11	0.6290 (2)	0.6236 (2)	0.52240 (8)	0.0472 (6)	
C12	0.6129 (3)	0.7268 (3)	0.49576 (11)	0.0631 (7)	
H12	0.6549	0.7329	0.4695	0.076*	
C13	0.5341 (3)	0.8211 (3)	0.50828 (13)	0.0785 (9)	
H13	0.5232	0.8918	0.4909	0.094*	
C14	0.4719 (3)	0.8092 (3)	0.54682 (13)	0.0810 (10)	

H14	0.4186	0.8714	0.5563	0.097*
C15	0.4906 (3)	0.7035 (3)	0.57070 (12)	0.0805 (10)
H15	0.4477	0.6950	0.5966	0.097*
C16	0.9562 (2)	0.4271 (2)	0.42791 (8)	0.0442 (5)
C17	1.0168 (4)	0.3227 (3)	0.41471 (11)	0.0782 (10)
H17	1.0084	0.2507	0.4307	0.094*
C18	1.0903 (4)	0.3227 (3)	0.37802 (12)	0.0806 (10)
H18	1.1317	0.2510	0.3703	0.097*
C19	1.1035 (3)	0.4254(3)	0.35296 (9)	0.0544 (6)
C20	1.0478 (3)	0.5310 (3)	0.36688 (10)	0.0680 (8)
H20	1.0580	0.6030	0.3510	0.082*
C21	0.9763 (3)	0.5325(3)	0.40425(10)	0.0601(7)
H21	0.9415	0.6059	0.4134	0.072*
C22	1 1736 (3)	0.0039 0.4222(3)	0.1191 0.31074 (10)	0.0654 (8)
H22A	1 1898	0.3384	0.3023	0.078*
H22R	1.1186	0.4611	0.2857	0.078*
C23	0.6229 (3)	0.5043 (3)	0.2057	0.0558 (7)
C24	0.0229(3) 0.6558(4)	0.5043(3)	0.71590 (8)	0.0558(7)
U24	0.0338 (4)	0.5487 (5)	0.75050 (10)	0.0733 (9)
П24 С25	0.7304	0.5895	0.7043	0.080°
C25	0.5059 (4)	0.5521(4)	0.78984 (11)	0.0891 (11)
H23	0.3892	0.3003	0.8192	0.107
C26	0.4473 (4)	0.4757 (4)	0.77919(11)	0.0804 (10)
H26	0.3892	0.4669	0.8012	0.09/*
C27	0.4105 (3)	0.4299 (3)	0.73521 (10)	0.0609 (7)
C28	0.2875 (3)	0.3705 (3)	0.72234 (11)	0.0717 (9)
H28	0.2256	0.3621	0.7431	0.086*
C29	0.2598 (3)	0.3259 (3)	0.67989 (12)	0.0744 (9)
H29	0.1796	0.2853	0.6713	0.089*
C30	0.3534 (3)	0.3414 (3)	0.64886 (10)	0.0710 (8)
H30	0.3333	0.3094	0.6198	0.085*
C31	0.4993 (3)	0.4438 (2)	0.70169 (9)	0.0511 (6)
C32	0.1542 (7)	0.7098 (6)	0.7540 (3)	0.163 (2)
H32A	0.0821	0.7381	0.7698	0.244*
H32B	0.2378	0.7227	0.7726	0.244*
H32C	0.1429	0.6243	0.7475	0.244*
C33	0.2519 (5)	0.7433 (6)	0.6824 (2)	0.160 (3)
H33A	0.2429	0.7970	0.6566	0.241*
H33B	0.2373	0.6606	0.6723	0.241*
H33C	0.3403	0.7509	0.6983	0.241*
C34	0.0645 (5)	0.8613 (4)	0.70234 (18)	0.1072 (14)
H34	0.0688	0.9030	0.6752	0.129*
Cl1	0.17980 (9)	0.06784 (7)	0.58331 (3)	0.0737 (2)
N1	0.7077 (3)	0.2271 (2)	0.59336 (8)	0.0769 (8)
N2	0.7070 (2)	0.41714 (18)	0.53544 (7)	0.0451 (5)
N3	0.5667 (3)	0.6108 (2)	0.55944 (8)	0.0645 (6)
N4	0.4683 (2)	0.3990 (2)	0.65858 (7)	0.0567 (6)
N5	0.1541 (4)	0.7757 (4)	0.71246 (16)	0.1093 (11)
01	0.70259 (19)	0.5143 (2)	0.67959 (6)	0.0649 (5)
	× /		× /	

O2	0.3231 (3)	0.0703 (3)	0.58888 (11)	0.1059 (9)
O3	0.1299 (4)	-0.0427 (3)	0.56646 (13)	0.1260 (12)
O4	0.1325 (5)	0.0871 (4)	0.62572 (16)	0.180 (2)
05	0.1337 (3)	0.1632 (3)	0.55563 (17)	0.1655 (18)
O6	-0.0233 (4)	0.8916 (3)	0.72468 (14)	0.1380 (13)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.08213 (18)	0.08620 (19)	0.04559 (13)	-0.00483 (12)	0.03491 (11)	-0.00590 (10)
C1	0.160 (4)	0.082 (2)	0.082 (2)	0.015 (3)	0.077 (3)	0.026 (2)
C2	0.158 (4)	0.078 (3)	0.100 (3)	0.021 (3)	0.076 (3)	0.040 (2)
C3	0.107 (3)	0.068 (2)	0.106 (3)	0.0214 (19)	0.055 (2)	0.028 (2)
C4	0.081 (2)	0.0640 (19)	0.0718 (19)	0.0146 (15)	0.0415 (17)	0.0185 (14)
C5	0.0590 (15)	0.0576 (16)	0.0474 (14)	0.0007 (12)	0.0221 (12)	0.0081 (12)
C6	0.0492 (13)	0.0519 (14)	0.0403 (12)	-0.0003 (11)	0.0156 (10)	0.0025 (10)
C7	0.0544 (14)	0.0475 (14)	0.0483 (13)	0.0059 (11)	0.0227 (11)	0.0026 (11)
C8	0.0407 (12)	0.0509 (13)	0.0337 (11)	-0.0011 (10)	0.0109 (9)	-0.0006 (9)
C9	0.0505 (14)	0.0482 (13)	0.0409 (12)	0.0029 (11)	0.0134 (10)	0.0034 (10)
C10	0.0427 (13)	0.0500 (14)	0.0383 (12)	-0.0016 (10)	0.0108 (10)	-0.0037 (10)
C11	0.0426 (13)	0.0541 (14)	0.0464 (13)	-0.0006 (11)	0.0120 (10)	-0.0076 (11)
C12	0.0659 (17)	0.0560 (17)	0.0712 (18)	0.0059 (14)	0.0245 (14)	-0.0010 (14)
C13	0.082 (2)	0.0589 (19)	0.100 (3)	0.0136 (16)	0.0305 (19)	-0.0012 (17)
C14	0.077 (2)	0.074 (2)	0.097 (3)	0.0214 (18)	0.0289 (19)	-0.0159 (19)
C15	0.081 (2)	0.092 (3)	0.076 (2)	0.0163 (19)	0.0429 (17)	-0.0136 (19)
C16	0.0448 (12)	0.0531 (14)	0.0370 (11)	0.0004 (11)	0.0143 (10)	-0.0004 (10)
C17	0.110 (3)	0.0582 (18)	0.078 (2)	0.0189 (17)	0.0595 (19)	0.0140 (15)
C18	0.111 (3)	0.0619 (19)	0.081 (2)	0.0178 (18)	0.062 (2)	0.0014 (16)
C19	0.0544 (15)	0.0674 (17)	0.0453 (13)	-0.0058 (13)	0.0220 (11)	-0.0067 (12)
C20	0.082 (2)	0.0683 (18)	0.0608 (17)	0.0028 (16)	0.0380 (16)	0.0150 (14)
C21	0.0707 (18)	0.0545 (15)	0.0611 (16)	0.0067 (13)	0.0331 (14)	0.0062 (13)
C22	0.0670 (18)	0.084 (2)	0.0498 (15)	-0.0139 (15)	0.0280 (13)	-0.0125 (14)
C23	0.0615 (16)	0.0705 (18)	0.0409 (13)	0.0039 (13)	0.0286 (12)	-0.0040 (12)
C24	0.081 (2)	0.094 (2)	0.0510 (16)	-0.0151 (17)	0.0307 (15)	-0.0187 (15)
C25	0.103 (3)	0.122 (3)	0.0496 (17)	-0.020 (2)	0.0410 (18)	-0.0262 (18)
C26	0.092 (2)	0.103 (3)	0.0559 (17)	-0.009 (2)	0.0482 (17)	-0.0122 (17)
C27	0.0656 (17)	0.0709 (18)	0.0523 (15)	0.0054 (14)	0.0329 (13)	0.0022 (13)
C28	0.070 (2)	0.083 (2)	0.069 (2)	0.0011 (16)	0.0406 (16)	0.0095 (17)
C29	0.0655 (19)	0.089 (2)	0.071 (2)	-0.0088 (17)	0.0203 (15)	0.0065 (17)
C30	0.072 (2)	0.094 (2)	0.0502 (16)	-0.0101 (17)	0.0173 (14)	-0.0025 (15)
C31	0.0598 (16)	0.0558 (15)	0.0426 (13)	0.0086 (12)	0.0269 (12)	0.0015 (10)
C32	0.172 (6)	0.138 (5)	0.174 (6)	0.005 (4)	0.000 (5)	0.008 (5)
C33	0.113 (4)	0.151 (5)	0.228 (7)	0.012 (4)	0.065 (4)	-0.052 (5)
C34	0.103 (3)	0.095 (3)	0.132 (4)	-0.008 (3)	0.045 (3)	-0.008 (3)
Cl1	0.0887 (6)	0.0615 (5)	0.0756 (5)	-0.0031 (4)	0.0286 (4)	-0.0032 (4)
N1	0.108 (2)	0.0706 (17)	0.0612 (15)	0.0056 (15)	0.0482 (15)	0.0132 (12)
N2	0.0458 (11)	0.0533 (12)	0.0384 (10)	-0.0010 (9)	0.0137 (8)	0.0005 (9)
N3	0.0684 (15)	0.0729 (16)	0.0570 (14)	0.0133 (12)	0.0274 (12)	-0.0021 (12)

supporting information

N4 N5 O1 O2 O3	0.0608 (14) 0.099 (3) 0.0634 (12) 0.0906 (19) 0.158 (3) 0.185 (4)	0.0696 (15) 0.094 (3) 0.0923 (15) 0.113 (2) 0.0764 (18) 0.239 (5)	0.0431 (11) 0.138 (3) 0.0450 (10) 0.115 (2) 0.151 (3) 0.130 (3)	-0.0014 (11) -0.003 (2) -0.0149 (10) 0.0127 (15) -0.0307 (19) -0.052 (3)	0.0212 (10) 0.024 (2) 0.0314 (9) 0.0156 (16) 0.051 (2) 0.081 (3)	0.0008 (10) -0.016 (2) -0.0126 (10) 0.0025 (16) -0.0370 (19) -0.081 (3)
03	0.158 (3)	0.0764 (18)	0.151 (3)	$\begin{array}{c} -0.0307 (19) \\ -0.052 (3) \\ 0.0051 (19) \\ 0.011 (2) \end{array}$	0.051 (2)	-0.0370 (19)
04	0.185 (4)	0.239 (5)	0.130 (3)		0.081 (3)	-0.081 (3)
05	0.091 (2)	0.121 (3)	0.284 (5)		0.021 (3)	0.105 (3)
06	0.125 (3)	0.140 (3)	0.165 (3)		0.082 (2)	-0.011 (2)

Geometric parameters (Å, °)

Ag1—O1	2.5995 (19)	C19—C20	1.370 (4)
Ag1—N1	2.434 (3)	C19—C22	1.508 (3)
Ag1—N2	2.3572 (19)	C20—C21	1.390 (4)
Ag1—N3	2.414 (3)	С20—Н20	0.9300
Ag1—N4	2.275 (2)	C21—H21	0.9300
C1—N1	1.338 (4)	C22—O1 ⁱ	1.426 (3)
C1—C2	1.361 (5)	C22—H22A	0.9700
C1—H1	0.9300	C22—H22B	0.9700
C2—C3	1.363 (5)	C23—C24	1.367 (4)
C2—H2	0.9300	C23—O1	1.373 (3)
C3—C4	1.382 (4)	C23—C31	1.418 (4)
С3—Н3	0.9300	C24—C25	1.419 (4)
C4—C5	1.377 (4)	C24—H24	0.9300
C4—H4	0.9300	C25—C26	1.347 (5)
C5—N1	1.341 (3)	С25—Н25	0.9300
C5—C6	1.489 (3)	C26—C27	1.406 (4)
C6—N2	1.338 (3)	С26—Н26	0.9300
C6—C7	1.392 (3)	C27—C28	1.410 (5)
C7—C8	1.392 (3)	C27—C31	1.421 (3)
С7—Н7	0.9300	C28—C29	1.348 (5)
C8—C9	1.395 (3)	C28—H28	0.9300
C8—C16	1.491 (3)	C29—C30	1.402 (4)
C9—C10	1.387 (3)	С29—Н29	0.9300
С9—Н9	0.9300	C30—N4	1.318 (4)
C10—N2	1.335 (3)	С30—Н30	0.9300
C10-C11	1.501 (3)	C31—N4	1.371 (3)
C11—N3	1.335 (3)	C32—N5	1.428 (7)
C11—C12	1.378 (4)	С32—Н32А	0.9600
C12—C13	1.380 (4)	С32—Н32В	0.9600
C12—H12	0.9300	С32—Н32С	0.9600
C13—C14	1.372 (5)	C33—N5	1.448 (6)
С13—Н13	0.9300	С33—Н33А	0.9600
C14—C15	1.359 (5)	С33—Н33В	0.9600
C14—H14	0.9300	С33—Н33С	0.9600
C15—N3	1.337 (4)	C34—O6	1.211 (5)
С15—Н15	0.9300	C34—N5	1.310 (6)
C16—C17	1.374 (4)	С34—Н34	0.9300

C16—C21	1.379 (4)	Cl1—O5	1.375 (3)
C17—C18	1.385 (4)	Cl1—O3	1.382 (3)
С17—Н17	0.9300	Cl1—O4	1.412 (4)
C18—C19	1.363 (4)	Cl1—O2	1.432 (3)
C18—H18	0.9300	O1—C22 ⁱ	1.426 (4)
N4—Ag1—N2	167.56 (8)	O1 ⁱ —C22—C19	107.7 (2)
N4—Ag1—N3	115.30 (8)	Ol ⁱ —C22—H22A	110.2
N2—Ag1—N3	68.62 (7)	C19—C22—H22A	110.2
N4—Ag1—N1	106.16 (8)	O1 ⁱ —C22—H22B	110.2
N2—Ag1—N1	68.55 (7)	C19—C22—H22B	110.2
N3—Ag1—N1	137.12 (7)	H22A—C22—H22B	108.5
N4—Ag1—O1	66.35 (7)	C24—C23—O1	124.4 (3)
N2—Ag1—O1	125.64 (6)	C24—C23—C31	120.9 (2)
N3—Ag1—O1	98.95 (8)	O1—C23—C31	114.7 (2)
N1—Ag1—O1	107.45 (9)	C23—C24—C25	119.5 (3)
N1—C1—C2	123.4 (3)	C23—C24—H24	120.3
N1—C1—H1	118.3	C25—C24—H24	120.3
C2—C1—H1	118.3	C26—C25—C24	121.1 (3)
C1—C2—C3	118.9 (3)	С26—С25—Н25	119.5
C1—C2—H2	120.5	C24—C25—H25	119.5
C3—C2—H2	120.5	C25—C26—C27	120.7 (3)
C2—C3—C4	118.7 (3)	C25—C26—H26	119.7
С2—С3—Н3	120.7	С27—С26—Н26	119.7
С4—С3—Н3	120.7	C26—C27—C28	122.9 (3)
C5—C4—C3	119.6 (3)	C26—C27—C31	119.5 (3)
C5—C4—H4	120.2	C28—C27—C31	117.6 (3)
C3—C4—H4	120.2	C29—C28—C27	119.9 (3)
N1—C5—C4	121.4 (2)	С29—С28—Н28	120.1
N1—C5—C6	116.3 (2)	С27—С28—Н28	120.1
C4—C5—C6	122.3 (2)	C28—C29—C30	119.2 (3)
N2—C6—C7	121.6 (2)	С28—С29—Н29	120.4
N2—C6—C5	116.5 (2)	С30—С29—Н29	120.4
C7—C6—C5	121.8 (2)	N4—C30—C29	123.6 (3)
C6—C7—C8	120.1 (2)	N4—C30—H30	118.2
С6—С7—Н7	120.0	С29—С30—Н30	118.2
С8—С7—Н7	120.0	N4—C31—C23	120.2 (2)
C7—C8—C9	117.0 (2)	N4—C31—C27	121.5 (3)
C7—C8—C16	121.3 (2)	C23—C31—C27	118.3 (2)
C9—C8—C16	121.7 (2)	N5—C32—H32A	109.5
С10—С9—С8	120.1 (2)	N5—C32—H32B	109.5
С10—С9—Н9	119.9	H32A—C32—H32B	109.5
С8—С9—Н9	119.9	N5—C32—H32C	109.5
N2—C10—C9	121.8 (2)	H32A—C32—H32C	109.5
N2-C10-C11	116.2 (2)	H32B—C32—H32C	109.5
C9—C10—C11	122.0 (2)	N5—C33—H33A	109.5
N3—C11—C12	121.5 (2)	N5—C33—H33B	109.5
N3—C11—C10	116.5 (2)	H33A—C33—H33B	109.5

C12—C11—C10	122.0 (2)	N5—C33—H33C	109.5
C11—C12—C13	119.5 (3)	H33A—C33—H33C	109.5
C11—C12—H12	120.2	H33B—C33—H33C	109.5
C13—C12—H12	120.2	O6—C34—N5	126.6 (5)
C14—C13—C12	119.1 (3)	O6—C34—H34	116.7
C14—C13—H13	120.5	N5—C34—H34	116.7
С12—С13—Н13	120.5	O5—Cl1—O3	111.6 (3)
C15—C14—C13	117.8 (3)	O5—C11—O4	107.0 (3)
C15—C14—H14	121.1	03-Cl1-04	107.9 (2)
C13—C14—H14	121.1	05-Cl1-02	108.57(19)
N3-C15-C14	1244(3)	03 - C11 - 02	1121(2)
N3-C15-H15	117.8	04-C11-02	109.6(2)
C14— $C15$ — $H15$	117.8	C1 - N1 - C5	109.0(2) 117.9(3)
C17 - C16 - C21	117.0 117.1(2)	C1 = N1 = Ag1	1237(2)
C17 - C16 - C8	117.1(2) 120.9(2)	C_{5} N1 Δg_{1}	123.7(2) 117.28(18)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	120.9(2) 122.0(2)	C_{10} N2 C6	117.26(18) 110.36(10)
$C_{21} = C_{10} = C_{8}$	122.0(2) 121.2(2)	$C_{10} = N_2 = C_0$	119.30(19)
C16 - C17 - C18	121.5 (5)	C_{10} N_{2} A_{c1}	119.70(13)
C10 - C17 - H17	119.5	$C_0 - N_2 - Ag_1$	119.77(13)
C18 - C17 - H17	119.5	C11 = N2 = A + 1	117.7(3)
C19 - C18 - C17	121.6 (3)	CII—N3—Agi	117.99 (18)
C19—C18—H18	119.2	C15—N3—Ag1	124.3 (2)
C17—C18—H18	119.2	C30—N4—C31	118.2 (2)
C18—C19—C20	117.6 (2)	C30—N4—Ag1	118.02 (19)
C18—C19—C22	121.2 (3)	C31—N4—Ag1	123.75 (18)
C20—C19—C22	121.2 (3)	C34—N5—C32	119.4 (5)
C19—C20—C21	121.2 (3)	C34—N5—C33	122.2 (5)
C19—C20—H20	119.4	C32—N5—C33	118.4 (5)
C21—C20—H20	119.4	C23—O1—C22 ⁱ	117.5 (2)
C16—C21—C20	121.1 (3)	C23—O1—Ag1	114.95 (16)
C16—C21—H21	119.5	C22 ⁱ —O1—Ag1	127.44 (14)
C20—C21—H21	119.5		
N1—C1—C2—C3	-2.1 (8)	N4—Ag1—N1—C1	-1.9 (4)
C1—C2—C3—C4	0.6 (7)	N2—Ag1—N1—C1	-170.0 (4)
C2—C3—C4—C5	0.8 (6)	N3—Ag1—N1—C1	-166.9 (3)
C3—C4—C5—N1	-1.0 (5)	O1—Ag1—N1—C1	67.8 (4)
C3—C4—C5—C6	-178.9 (3)	N4—Ag1—N1—C5	165.8 (2)
N1-C5-C6-N2	-14.4 (4)	N2—Ag1—N1—C5	-2.3 (2)
C4—C5—C6—N2	163.7 (3)	N3—Ag1—N1—C5	0.9 (3)
N1—C5—C6—C7	166.4 (3)	O1—Ag1—N1—C5	-124.5 (2)
C4—C5—C6—C7	-15.5 (4)	C9—C10—N2—C6	0.5 (4)
N2—C6—C7—C8	-0.8 (4)	C11—C10—N2—C6	-179.2 (2)
C5—C6—C7—C8	178.4 (2)	C9—C10—N2—Ag1	168.45 (18)
C6—C7—C8—C9	1.4 (4)	C11—C10—N2—Ag1	-11.2 (3)
C6—C7—C8—C16	-177.6 (2)	C7—C6—N2—C10	-0.2 (4)
C7—C8—C9—C10	-1.1 (4)	C5—C6—N2—C10	-179.4(2)
C16—C8—C9—C10	177.9 (2)	C7—C6—N2—Ag1	-168.13(19)
C8—C9—C10—N2	0.2 (4)	C5—C6—N2—Ag1	12.7 (3)
	····		(-)

C8—C9—C10—C11	179.8 (2)	N4—Ag1—N2—C10	119.3 (4)
N2-C10-C11-N3	6.6 (3)	N3—Ag1—N2—C10	8.49 (18)
C9-C10-C11-N3	-173.0 (2)	N1—Ag1—N2—C10	-173.8(2)
N2-C10-C11-C12	-171.3 (2)	O1—Ag1—N2—C10	-77.2 (2)
C9-C10-C11-C12	9.0 (4)	N4—Ag1—N2—C6	-72.7 (4)
N3—C11—C12—C13	2.1 (5)	N3—Ag1—N2—C6	176.4 (2)
C10-C11-C12-C13	180.0 (3)	N1—Ag1—N2—C6	-5.86 (18)
C11—C12—C13—C14	-0.8 (5)	O1—Ag1—N2—C6	90.73 (19)
C12—C13—C14—C15	-0.5 (6)	C12—C11—N3—C15	-1.9 (4)
C13—C14—C15—N3	0.7 (6)	C10-C11-N3-C15	-179.9 (3)
C7—C8—C16—C17	8.0 (4)	C12-C11-N3-Ag1	178.9 (2)
C9—C8—C16—C17	-170.9 (3)	C10—C11—N3—Ag1	0.9 (3)
C7—C8—C16—C21	-172.5 (3)	C14—C15—N3—C11	0.5 (5)
C9—C8—C16—C21	8.6 (4)	C14—C15—N3—Ag1	179.7 (3)
C21—C16—C17—C18	-2.6(5)	N4—Ag1—N3—C11	-171.7 (2)
C8-C16-C17-C18	176.9 (3)	N2—Ag1—N3—C11	-4.6(2)
C16—C17—C18—C19	-1.3(6)	N1 - Ag1 - N3 - C11	-7.7(3)
C17 - C18 - C19 - C20	3.7 (6)	O1 - Ag1 - N3 - C11	120.3(2)
C17 - C18 - C19 - C22	-174.7(3)	N4—Ag1—N3—C15	9.1 (3)
C18 - C19 - C20 - C21	-23(5)	N2—Ag1—N3—C15	1763(3)
C_{22} C_{19} C_{20} C_{21} C_{21}	176 2 (3)	N1 - Ag1 - N3 - C15	173.1(3)
C17 - C16 - C21 - C20	40(5)	Ω_1 Ag1 N3 C15	-58.9(3)
C8-C16-C21-C20	-1755(3)	C_{29} C_{30} N_{4} C_{31}	15(5)
C19-C20-C21-C16	-16(5)	C_{29} C_{30} N_{4} A_{g1}	-176.6(3)
$C18 - C19 - C22 - O1^{i}$	-1097(3)	C_{23} C_{31} N_{4} C_{30}	178.8(3)
C_{20} C_{19} C_{22} O_{1i}	720(4)	$C_{22} = C_{21} = N_4 = C_{30}$	-0.4(4)
$01 - C^{23} - C^{24} - C^{25}$	-1794(3)	C_{23} C_{31} N_{4} A_{g1}	-33(3)
C_{31} C_{23} C_{24} C_{25}	11(5)	C_{23} C_{31} N_{4} A_{g1}	17755(19)
C_{23} C_{24} C_{25} C_{24} C_{25} C_{26}	-1.5(6)	N2 = Ag1 = N4 = C30	-140(5)
$C_{23}^{24} = C_{25}^{25} = C_{26}^{26}$	1.5 (0)	$N_3 \Delta g_1 N_4 C_{30}$	91.7(2)
$C_{24} = C_{25} = C_{26} = C_{27} = C_{28}$	-179.8(4)	N1 = Ag1 = N4 = C30	-770(2)
$C_{25} = C_{26} = C_{27} = C_{28}$	-0.2(5)	$\Omega_1 = Ag_1 = N4 = C30$	-179.3(3)
$C_{25} = C_{20} = C_{27} = C_{28} = C_{29}$	-1783(3)	$N2 \Delta g1 N4 C31$	179.5(3)
$C_{20} = C_{27} = C_{20} = C_{29}$	21(5)	$N_2 - Ag_1 - N_4 - C_{31}$	-86.2(2)
$C_{27} C_{28} C_{20} C_{20} C_{20}$	-1.2(5)	$N_1 = Ag_1 = N_4 = C_3 I$	105.0(2)
$C_{28} = C_{29} = C_{30} = N_4$	-0.7(6)	$\Omega_1 = \Lambda_{g1} = N_4 = C_{31}$	270(19)
$C_{23} = C_{23} = C_{30} = N_4$	-1795(3)	06 - C34 - N5 - C32	-1.1(8)
$C_{24} = C_{23} = C_{31} = N_4$	1/9.5(3)	06 C34 N5 C33	1.1(0) 1775(5)
$C_{23} = C_{31} = C_{31}$	-0.3(4)	$C_{24} C_{23} O_{1} C_{23}^{i}$	-16(4)
$C_2 + C_2 - C_3 - C_3 - C_2 7$	-1798(2)	$C_{24} = C_{23} = 01 = C_{22}$	1.0(4)
$C_{25} = C_{25} = C_{21} = C_{27}$	179.0(2)	$C_{24} = C_{23} = 01 = 0.022$	-178.2(3)
$C_{20} = C_{27} = C_{31} = N_{4}$	-1.3(4)	$C_{24} = C_{23} = O_1 = A_{g1}$	170.2(3)
$C_{26} = C_{27} = C_{31} = C_{31}$	-0.2(4)	$N_{\rm A}$ $A_{\rm g1}$ $O1$ $C23$	-2.03(18)
$C_{20} = C_{27} = C_{31} = C_{23}$	0.2(4)	N4 - Ag1 - O1 - C23 $N2 - Ag1 - O1 - C23$	-178 10 (17)
$C_{20} - C_{27} - C_{31} - C_{23}$	1/2.4(3)	$N_2 - Ag_1 = 01 - 023$	1/0.19(1/) 111.75(10)
$C_2 = C_1 = 1 \times 1 = C_3$	2.0(7)	$N_{1} = Ag_{1} = O_{1} = O_{2}$	-102 A (2)
$C_{4} = C_{5} = N_{1} = C_{1}$	-0.4(5)	$\frac{1}{2} - \frac{1}{2} - \frac{1}$	-178.2(2)
$C_{4} = C_{5} = 0$	(3)	$N_{2} = A_{g1} = O_{1} = O_{22}^{i}$	55(3)
U - U - U	1//./ (3)	1NZ - Ag1 - 01 - 02Z'	5.5 (5)

C4—C5—N1—Ag1	-168.9 (2)	N3—Ag1—O1—C22 ⁱ	-64.5 (2)
C6—C5—N1—Ag1	9.2 (3)	N1—Ag1—O1—C22 ⁱ	81.3 (3)

Symmetry code: (i) -x+2, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C4—H4…O3 ⁱⁱ	0.93	2.57	3.450 (5)	158
C12—H12…O5 ⁱⁱⁱ	0.93	2.60	3.344 (5)	138
C28—H28…O6 ^{iv}	0.93	2.37	3.250 (5)	158
С29—Н29…О4	0.93	2.57	3.252 (6)	130

Symmetry codes: (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, *y*-1/2, -*z*+3/2.