

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichloridobis(1,10-phenanthroline-5,6dione- $\kappa^2 N, N'$)mercury(II)

Carlos A. L. Figueiras,^a João A. S. Bomfim,^a R. Alan Howie,^b Edward R. T. Tiekink^{c*} and James L. Wardell^d‡

^aDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21941-909 Rio de Janeiro, RJ, Brazil, ^bDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB15 5NY, Scotland, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dDepartamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil

Correspondence e-mail: edward.tiekink@gmail.com

Received 10 November 2009; accepted 18 November 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.012 Å; R factor = 0.037; wR factor = 0.094; data-to-parameter ratio = 15.6.

In the title compound, $[HgCl_2(C_{12}H_6N_2O_2)_2]$, the Hg^{II} atom is located on a twofold rotation axis and exists within a distorted octahedral geometry defined by a *cis*-Cl₂N₄ donor set. Molecules are connected into layers in the *ac* plane *via* extensive C-H···Cl contacts as each Cl atom forms two such interactions. Contacts between the layers are of the type C=O··· π [O···centroid distance = 3.110 (8) Å].

Related literature

For related main-group compounds of 1,10-phenanthroline-5,6-dione, see: de Alencastro *et al.* (2005). For the ligand synthesis, see: Yamada *et al.* (1992). For a related structure, see: Ramezanipour *et al.* (2005).

Experimental

Crystal data $[HgCl_2(C_{12}H_6N_2O_2)_2]$ $M_r = 691.87$ Orthorhombic, Fdd2 a = 8.2261 (2) Å b = 42.6761 (11) Å c = 12.6108 (3) Å

 $V = 4427.12 (19) Å^{3}$ Z = 8Mo K\alpha radiation $\mu = 7.24 \text{ mm}^{-1}$ T = 120 K $0.20 \times 0.10 \times 0.06 \text{ mm}$

‡ Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

 $R_{\rm int} = 0.075$

10751 measured reflections

2487 independent reflections

2239 reflections with $I > 2\sigma(I)$

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.204, \ T_{\max} = 0.651$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$vR(F^2) = 0.094$	$\Delta \rho_{\rm max} = 2.27 \text{ e } \text{\AA}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
2487 reflections	Absolute structure: Flack (1983),
59 parameters	1163 Friedel pairs
restraint	Flack parameter: -0.012 (13)

Table 1

Selected bond lengths (Å).

Hg-N1	2.439 (7)	Hg-Cl1	2.5270 (19)
Hg-N2	2.512 (6)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2 - H2 \cdots Cl1^{i}$ $C9 - H9 \cdots Cl1^{ii}$	0.95 0.95	2.69 2.78	3.578 (8) 3.701 (8)	156 164
	4 (**)	. 1 1		

Symmetry codes: (i) x - 1, y, z; (ii) $x + \frac{1}{2}$, y, $z - \frac{1}{2}$.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2009).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there are gratefully acknowledged. JLW acknowledges support from FAPEMIG (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2254).

References

Alencastro, R. B. de, Bomfim, J. A. S., Filgueiras, C. A. L., Howie, R. A. & Wardell, J. L. (2005). Appl. Organomet. Chem. 19, 479–487.

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Flack, H. D. (1983). *Acta Cryst.* A**39**, 876–881.

Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Ramezanipour, F., Aghabozorg, H. & Soleimannejad, J. (2005). Acta Cryst. E61, m1194–m1196.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Yamada, M., Tanaka, Y., Yashimoto, Y., Juroda, S. & Shimao, I. (1992). Bull. Chem. Soc. Jpn, 65, 1006–1011.

supporting information

Acta Cryst. (2009). E65, m1645 [doi:10.1107/S1600536809049289]

Dichloridobis(1,10-phenanthroline-5,6-dione- $\kappa^2 N, N'$)mercury(II)

Carlos A. L. Figueiras, João A. S. Bomfim, R. Alan Howie, Edward R. T. Tiekink and James L. Wardell

S1. Comment

In continuation of the previous studies of coordination compounds of 1,10-phenanthroline-5,6-dione (pdon) ligand (de Alencastro *et al.*, 2005), the title compound, HgCl₂(pdon)₂, was investigated. The reaction of HgCl₂ with pdon (1:1 mol ratio) led to the isolation of a pure 1:1 complex, HgCl₂(pdon). However, as the product was unsuitable for X-ray crystallography, a further recrystallization from MeNO₂ solution was attempted, which led to the isolation of the title compound, a 1:2 complex. Of interest was that the 1:1 HgI₂(pdon) complex, prepared similarly to the chloride analogue, was recovered on recrystallization from MeNO₂. Unfortunately this set of crystals also proved unsuitable for X-ray crystallography.

In the title compound, the Hg^{II} atom lies on a crystallographic twofold axis and exists within a *cis*-Cl₂N₄ donor set defined by two Cl atoms and four N atoms derived from two chelating pdon ligands (Fig. 1). There is a small disparity in the magnitude of the Hg—N bond distances, with Hg—N1 of 2.439 (7) Å being shorter than Hg—N2 of 2.512 (6) Å. Distortions from an ideal octahedral geometry are related in part to the acute chelate angle of 66.9 (2)°. The pdon ligand is essentially planar with a RMS of 0.226 Å for the N and C atoms, with O1 and O2 atoms lying, respectively, -0.079 (12) and 0.071 (13) Å out of the least-squares plane. The dihedral angle formed between the symmetry related 1,10-phenanthroline planes is 87.13 (11)°. The structural features described herein for the title compound resemble those found for HgCl₂(1,10-phenanthroline)₂ (Ramezanipour *et al.*, 2005).

In the crystal structure, C—H…Cl interactions are found so that each Cl atom is associated with two H atoms to form supramolecular arrays in the *ac* plane (Table 1 and Fig. 2). The most prominent interactions between the layers are of the type C=O… π . The closest of these involves the carbonyl-O1 group and the centroid (*Cg*) of C4–C7, C11, C12 ring [O1…*Cg*ⁱ = 3.110 (8) Å with the C5–O1…*Cg*ⁱ angle being 133.1 (8)°, symmetry code: (i) -1/4+x, 1/4-y, -1/4+z] (Fig. 3).

S2. Experimental

Solutions of HgCl₂ (0.272 mg, 1.0 mmol) in EtOH (5 ml) and of 1,10-phenanthroline-5,6-dione (Yamada *et al.*, 1992) (0.212 mg, 1.0 mmol) in EtOH (20 ml) were mixed and stirred at room temperature for 1 h. The precipitate was collected, washed with small portions of EtOH and petroleum ether and dried (yield 0.330 mg). Analysis, calculated for $C_{12}H_6Cl_2HgN_2O_2$ [HgCl₂(pdon)]: C 29.9, H 1.3, N 5.8%; found: C 30.2, H 1.5, N 5.2%.

Recrystallization of HgCl₂(pdon) from MeNO₂ solution produced crystals of the title compound, HgCl₂(pdon)₂.

S3. Refinement

H atoms were geometrically placed with C—H = 0.95 Å, and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The maximum and minimum residual electron density peaks of 2.27 and 0.68 e Å⁻³ were located 0.91 and 0.82 Å from Hg atom, respectively.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, -y, z.]

Figure 2

Supramolecular array in the *ac* plane mediated by C—H···Cl contacts (orange dashed lines). [Colour codes: Hg orange; Cl cyan; O red; N blue; C grey; H green.]

Figure 3

Unit-cell contents viewed in projection down the *a* axis. The C—H···Cl contacts are shown as orange dashed lines. [Colour codes: Hg orange; Cl cyan; O red; N blue; C grey; H green.]

Dichloridobis(1,10-phenanthroline-5,6-dione- $\kappa^2 N, N'$)mercury(II)

Crystal data	
$[HgCl_2(C_{12}H_6N_2O_2)_2]$	F(000) = 2640
$M_r = 691.87$	$D_{\rm x} = 2.076 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, <i>Fdd</i> 2	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: F 2 -2d	Cell parameters from 18660 reflections
a = 8.2261 (2) Å	$\theta = 2.9 - 27.5^{\circ}$
b = 42.6761 (11) Å	$\mu = 7.24 \text{ mm}^{-1}$
c = 12.6108 (3) Å	T = 120 K
$V = 4427.12 (19) Å^3$	Block, yellow
Z = 8	$0.20 \times 0.10 \times 0.06 \text{ mm}$

Data collection

 Nonius KappaCCD diffractometer Radiation source: Enraf Nonius FR591 rotating anode 10 cm confocal mirrors monochromator Detector resolution: 9.091 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Refinement 	$T_{\min} = 0.204, T_{\max} = 0.651$ 10751 measured reflections 2487 independent reflections 2239 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.075$ $\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 3.0^{\circ}$ $h = -10 \rightarrow 8$ $k = -55 \rightarrow 55$ $l = -16 \rightarrow 16$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.094$ S = 1.05 2487 reflections 159 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0564P)^2 + 3.1352P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 2.27$ e Å ⁻³ $\Delta\rho_{min} = -0.68$ e Å ⁻³ Absolute structure: Flack (1983), 1163 Friedel pairs Absolute structure parameter: -0.012 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Hg	0.0000	0.0000	0.48512 (8)	0.04052 (12)	
C11	0.1811 (2)	0.03035 (5)	0.61020 (15)	0.0486 (4)	
01	-0.3649 (8)	0.12440 (15)	0.2228 (6)	0.072 (2)	
O2	-0.0592 (10)	0.12581 (18)	0.1361 (7)	0.081 (2)	
N1	-0.2157 (8)	0.03565 (16)	0.4299 (5)	0.0406 (14)	
N2	0.0815 (7)	0.03486 (14)	0.3337 (4)	0.0399 (13)	
C1	-0.3618 (9)	0.03505 (19)	0.4754 (6)	0.0472 (16)	
H1	-0.3840	0.0191	0.5258	0.057*	
C2	-0.4837 (9)	0.0567 (2)	0.4528 (7)	0.050 (2)	
H2	-0.5869	0.0554	0.4864	0.060*	
C3	-0.4507 (11)	0.07993 (18)	0.3806 (6)	0.0459 (17)	
Н3	-0.5300	0.0955	0.3653	0.055*	
C4	-0.3014 (10)	0.08061 (18)	0.3300 (6)	0.0435 (16)	
C5	-0.2664 (10)	0.1051 (2)	0.2493 (14)	0.057 (3)	
C6	-0.0923 (11)	0.1052 (2)	0.1979 (8)	0.059 (2)	
C7	0.0217 (9)	0.0800(2)	0.2297 (7)	0.0450 (17)	
C8	0.1742 (11)	0.0790 (2)	0.1830 (6)	0.0482 (18)	
H8	0.2071	0.0945	0.1335	0.058*	
C9	0.2777 (9)	0.0545 (2)	0.2110 (6)	0.0453 (18)	
H9	0.3818	0.0526	0.1792	0.054*	
C10	0.2257 (10)	0.03325 (19)	0.2861 (7)	0.0437 (17)	
H10	0.2965	0.0166	0.3047	0.052*	
C11	-0.0196 (9)	0.05763 (18)	0.3047 (6)	0.0409 (16)	

supporting information

C12	-0.1850 (9	0.058	09 (16)	0.3578 (7)	0.0413 (14)	
Atomic	displacement para	meters ($Å^2$)				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Hg	0.03662 (19)	0.04817 (18)	0.03677 (16)	0.00021 (19)	0.000	0.000
Cl1	0.0400 (9)	0.0635 (11)	0.0424 (9)	-0.0042 (8)	-0.0003 (8)	-0.0077 (8)
01	0.062 (4)	0.064 (4)	0.091 (5)	0.015 (3)	0.005 (4)	0.029 (4)
O2	0.055 (4)	0.082 (5)	0.106 (6)	0.016 (4)	0.016 (4)	0.049 (4)
N1	0.042 (3)	0.046 (3)	0.034 (3)	-0.003 (3)	0.004 (2)	-0.003 (3)
N2	0.035 (3)	0.049 (3)	0.036 (3)	0.003 (3)	0.000 (2)	-0.001 (2)
C1	0.039 (4)	0.064 (4)	0.039 (3)	-0.007 (3)	-0.002 (3)	-0.005 (4)
C2	0.033 (4)	0.069 (5)	0.047 (4)	-0.006 (3)	0.001 (3)	-0.010 (3)
C3	0.044 (4)	0.047 (4)	0.047 (4)	0.006 (3)	-0.004 (3)	-0.011 (3)
C4	0.032 (3)	0.053 (4)	0.045 (4)	0.001 (3)	-0.006 (3)	-0.004 (3)
C5	0.048 (5)	0.055 (4)	0.067 (10)	0.002 (4)	-0.011 (5)	0.012 (5)
C6	0.052 (5)	0.059 (5)	0.067 (5)	0.000 (4)	-0.008(4)	0.012 (4)
C7	0.044 (4)	0.048 (4)	0.043 (4)	-0.003 (3)	0.004 (3)	-0.001 (3)
C8	0.050 (5)	0.052 (4)	0.043 (4)	-0.004 (3)	-0.001 (3)	0.007 (3)
C9	0.037 (4)	0.062 (5)	0.038 (4)	-0.011 (3)	0.001 (3)	-0.007 (3)
C10	0.047 (5)	0.042 (4)	0.042 (4)	0.005 (3)	-0.007 (3)	-0.001 (3)
C11	0.043 (4)	0.042 (4)	0.038 (3)	0.000 (3)	-0.002 (3)	-0.009 (3)
C12	0.039 (4)	0.040 (3)	0.045 (3)	0.000 (3)	-0.009 (3)	-0.002 (3)

Geometric parameters (Å, °)

Hg—N1	2.439 (7)	С3—Н3	0.9500
Hg—N2	2.512 (6)	C4—C12	1.401 (11)
Hg—Cl1	2.5270 (19)	C4—C5	1.487 (15)
O1—C5	1.203 (11)	C5—C6	1.572 (14)
O2—C6	1.206 (11)	C6—C7	1.483 (12)
N1-C1	1.332 (10)	C7—C11	1.386 (12)
N1-C12	1.344 (10)	C7—C8	1.387 (12)
N2-C11	1.330 (10)	C8—C9	1.392 (12)
N2-C10	1.331 (10)	C8—H8	0.9500
C1—C2	1.393 (12)	C9—C10	1.380 (11)
C1—H1	0.9500	С9—Н9	0.9500
C2—C3	1.374 (13)	C10—H10	0.9500
C2—H2	0.9500	C11—C12	1.516 (11)
C3—C4	1.384 (11)		
N1—Hg—N1 ⁱ	146.8 (3)	С4—С3—Н3	120.1
N1—Hg—N2 ⁱ	87.6 (2)	C3—C4—C12	118.4 (8)
N1 ⁱ —Hg—N2 ⁱ	66.9 (2)	C3—C4—C5	120.1 (7)
N1—Hg—N2	66.9 (2)	C12—C4—C5	121.4 (7)
N1 ⁱ —Hg—N2	87.6 (2)	O1—C5—C4	122.8 (9)
N2 ⁱ —Hg—N2	81.0 (3)	O1—C5—C6	119.8 (11)
N1—Hg—Cl1	106.71 (16)	C4—C5—C6	117.4 (8)

N1 ⁱ —Hg—Cl1	93.95 (16)	O2—C6—C7	124.1 (9)
N2 ⁱ —Hg—Cl1	159.31 (13)	O2—C6—C5	118.3 (9)
N2—Hg—Cl1	90.78 (14)	C7—C6—C5	117.5 (8)
N1—Hg—Cl1 ⁱ	93.95 (16)	C11—C7—C8	119.4 (8)
N1 ⁱ —Hg—Cl1 ⁱ	106.71 (16)	C11—C7—C6	122.0 (7)
$N2^{i}$ Hg $-C11^{i}$	90.78 (14)	C8—C7—C6	118.6 (8)
N2—Hg—Cl1 ⁱ	159.31 (13)	C7—C8—C9	117.9 (8)
Cl1—Hg—Cl1 ⁱ	102.75 (10)	С7—С8—Н8	121.0
C1-N1-C12	118.3 (7)	С9—С8—Н8	121.0
C1—N1—Hg	121.4 (5)	C10-C9-C8	118.6 (7)
C12 - N1 - Hg	1200(5)	C10-C9-H9	120.7
$C_{11} = N_2 = C_{10}$	1181(7)	C8-C9-H9	120.7
$C_{11} = N_2 = H_{\sigma}$	118.1(7) 118.3(5)	$N_2 - C_{10} - C_9$	123.7 123.5(7)
C10 N2 Hg	1234(5)	$N_2 - C_{10} - H_{10}$	118.3
N1 - C1 - C2	123.3 (8)	C9-C10-H10	118.3
N1_C1_H1	118.4	N2_C11_C7	122.5(7)
$C_2 C_1 H_1$	118.4	$N_2 = C_1 = C_7$ $N_2 = C_1 = C_1 = C_1 = C_2$	122.3(7)
$C_2 = C_1 = III$	110.4 118.2(7)	R_{2} C_{11} C_{12} C_{12}	110.7(7)
$C_3 = C_2 = C_1$	110.2 (7)	$C_{1} = C_{11} = C_{12}$	120.8(7)
$C_3 = C_2 = H_2$	120.9	N1 - C12 - C4	122.0(8)
C1 = C2 = H2	120.9	NI = C12 = C11	11/.3(7)
$C_2 = C_3 = C_4$	119.8 (7)	C4—C12—C11	120.7 (7)
C2—C3—H3	120.1		
N1i II.~ N1 C1	125 2 (6)	C4 C5 C6 C7	20(16)
N_{1}^{2} H_{2}^{2} N_{1}^{2} C_{1}^{2}	155.2(0)	$C_4 = C_5 = C_6 = C_7$	2.9(10)
$N_2 - H_2 - N_1 - C_1$	90.0(0)	02-00-07-011	177.0(10)
$N_2 - H_2 - N_1 - C_1$	1/7.8(0)	$C_{3} = C_{0} = C_{7} = C_{11}$	-2.5(14)
CII—Hg—NI—CI	-98.0 (0)	02 - 06 - 07 - 08	-2.6 (15)
CII-Hg-NI-CI	5.9 (6)	$C_{3} = C_{0} = C_{1} = C_{8}$	1/8.0 (9)
NI - Hg - NI - C12	-50.0(5)	$C_{11} = C_{12} = C_{12} = C_{12}$	2.5 (12)
N2 - Hg - N1 - C12	-88.6 (6)	$C_{0} = C_{1} = C_{0} = C_{0}$	-1/.8(8)
N2—Hg—N1—C12	-7.4 (5)	C/-C8-C9-C10	-2.2 (12)
CII—Hg—NI—CI2	76.2 (6)	C11—N2—C10—C9	2.3 (12)
Cll'—Hg—Nl—Cl2	-179.2 (5)	Hg—N2—C10—C9	-172.5 (6)
N1—Hg—N2—C11	7.4 (5)	C8—C9—C10—N2	-0.2(12)
$N1^{i}$ -Hg-N2-C11	165.7 (5)	C10—N2—C11—C7	-1.9 (11)
$N2^{i}$ —Hg—N2—C11	98.7 (5)	Hg—N2—C11—C7	173.2 (6)
Cl1—Hg—N2—C11	-100.4 (5)	C10—N2—C11—C12	177.9 (7)
Cl1 ⁱ —Hg—N2—C11	30.9 (8)	Hg—N2—C11—C12	-7.0 (8)
N1—Hg—N2—C10	-177.7 (6)	C8—C7—C11—N2	-0.5 (12)
N1 ⁱ —Hg—N2—C10	-19.5 (6)	C6—C7—C11—N2	179.8 (8)
$N2^{i}$ —Hg—N2—C10	-86.5 (6)	C8—C7—C11—C12	179.7 (7)
Cl1—Hg—N2—C10	74.4 (6)	C6—C7—C11—C12	0.0 (12)
Cl1 ⁱ —Hg—N2—C10	-154.2 (5)	C1—N1—C12—C4	0.1 (11)
C12—N1—C1—C2	-0.6 (12)	Hg—N1—C12—C4	-174.9 (5)
Hg—N1—C1—C2	174.3 (6)	C1—N1—C12—C11	-178.1 (6)
N1—C1—C2—C3	-0.5 (12)	Hg—N1—C12—C11	6.9 (9)
C1—C2—C3—C4	2.2 (12)	C3—C4—C12—N1	1.6 (11)
C2—C3—C4—C12	-2.7 (11)	C5-C4-C12-N1	-179.4 (9)

C2—C3—C4—C5	178.2 (9)	C3—C4—C12—C11	179.8 (7)
C3-C4-C5-O1	-2.1 (18)	C5-C4-C12-C11	-1.2 (13)
C12—C4—C5—O1	178.8 (11)	N2-C11-C12-N1	0.3 (10)
C3—C4—C5—C6	177.9 (9)	C7—C11—C12—N1	-179.9 (7)
C12—C4—C5—C6	-1.1 (16)	N2-C11-C12-C4	-178.0(7)
O1—C5—C6—O2	3.5 (19)	C7—C11—C12—C4	1.9 (11)
C4—C5—C6—O2	-176.5 (10)	O1—C5—C6—O2	3.5 (19)
O1—C5—C6—C7	-177.1 (11)		

Symmetry code: (i) -x, -y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C2—H2···Cl1 ⁱⁱ	0.95	2.69	3.578 (8)	156
C9—H9····Cl1 ⁱⁱⁱ	0.95	2.78	3.701 (8)	164

Symmetry codes: (ii) *x*-1, *y*, *z*; (iii) *x*+1/2, *y*, *z*-1/2.