

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -2'-carboxylatobiphenyl-2carboxylic acid- $\kappa^2 O^2: O^{2'}$)bis[(2,2'bipyridine- $\kappa^2 N, N'$)(2'-carboxylatobiphenyl-2-carboxylic acid- $\kappa O^{2'}$)zinc(II)]

Zhe An

School of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China Correspondence e-mail: anz_md@163.com

Received 6 October 2009; accepted 29 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.098; data-to-parameter ratio = 12.0.

In the dimeric title compound, $[Zn_2(C_{14}H_9O_4)_4(C_{10}H_8N_2)_2]$, the Zn^{II} ions are pentacoordinated by one 2,2'-bipyridyl ligand and by three O atoms from three 2'-carboxylatobiphenyl-2-carboxylic acid ligands. Two of the 2'-carboxylatobiphenyl-2-carboxylic acid ligands act as bridging ligands and, together with two zinc(II) cations, produce an 18-membered ring system. The remaining 2'-carboxylatobiphenyl-2-carboxylic acid ligands work as monodentate ligands. The crystal packing diagram is consolidated by $O-H \cdots O$ hydrogen bonds.

Related literature

For related structures of metal-organic frameworks incorporating zinc or lanthanides and dicarboxylic acids, see: Wan & Zhang (2003); Vodak *et al.* (2001).

10807 measured reflections

 $R_{\rm int} = 0.014$

5332 independent reflections

4820 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$$\begin{split} & \begin{bmatrix} \text{Zn}_2(\text{C}_{14}\text{H}_9\text{O}_4)_4(\text{C}_{10}\text{H}_8\text{N}_2)_2 \end{bmatrix} & \gamma = 92.680 ~(1)^\circ \\ & M_r = 1407.96 & V = 1576.9 ~(1) ~\text{Å}^3 \\ & \text{Triclinic, } P\overline{1} & Z = 1 \\ & a = 10.8745 ~(4) ~\text{\AA} & \text{Mo } K\alpha \text{ radiation} \\ & b = 11.6465 ~(4) ~\text{\AA} & \mu = 0.84 \text{ mm}^{-1} \\ & c = 14.0223 ~(5) ~\text{\AA} & T = 293 \text{ K} \\ & \alpha = 103.094 ~(1)^\circ & 0.12 \times 0.10 \times 0.08 \text{ mm} \\ & \beta = 112.773 ~(1)^\circ \end{split}$$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\rm min} = 0.906, T_{\rm max} = 0.936$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	444 parameters
$wR(F^2) = 0.098$	H-atom parameters not refined
S = 1.00	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
5332 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H4 <i>A</i> ···O2 ⁱ O7−H7···O6	0.82 0.82	1.85 1.74	2.6545 (19) 2.551 (2)	167 170
Summetry code: (i) $-x + 2 - y + 2 - z + 1$				

Symmetry code: (i) -x + 2, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2005); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The author acknowledges financial support from the Program for Talent Introduction in Guangdong Higher Education Institutions and the Scientific Research Start-up Funds of Talent Introduction in Maoming University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2149).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2005). *SMART* and *SAINT-Plus*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vodak, D. T., Braun, M. E., Kim, J., Eddaoudi, M. & Yaghi, O. M. (2001). *Chem. Commun.* pp. 2534–2535.
- Wan, Y. H. & Zhang, L. P. (2003). J. Mol. Struct. 658, 253-260.

supporting information

Acta Cryst. (2009). E65, m1501 [doi:10.1107/S1600536809045541]

Bis(μ -2'-carboxylatobiphenyl-2-carboxylic acid- $\kappa^2 O^2$: O^2 ')bis[(2,2'-bipyridine- $\kappa^2 N, N'$)(2'-carboxylatobiphenyl-2-carboxylic acid- κO^2 ')zinc(II)]

Zhe An

S1. Comment

Aromatic dicarboxylic acids are widely used in the construction of coordination polymers due to their capability of acting as bridging and chelating ligands in various coordination modes (Wan & Zhang, 2003). The preparation of metal aromatic carboxylates under hydrothermal conditions has also been reported (Vodak *et al.*2001).

In the present paper, we describe the synthesis and structural characterization of the title compound.

As shown in figure 1, the Zn^{II} ions are pentacoordinated by one 2,2'-bipyridyl ligand and by three oxygen atoms from three 2'-carboxylatobiphenyl-2-carboxylic acid ligands. Two of the 2'-carboxylatobiphenyl-2-carboxylic acid ligands act as bridging ligands and together with two zinc(II) cations produce an 18 membered ring system. The Zn···Zn distance measures to 6.701 Å. The remaining 2'-carboxylatobiphenyl-2-carboxylic acid ligands. The crystal packing diagram is consolidated by O—H···O hydrogen bonds. (Table 1, Figure 2).

S2. Experimental

A mixture of $Zn(CH_3COO)_2 \times 2 H_2O$ (0.25 mmol), biphenyl-2,2'-dicarboxylic acid (0.2 mmol), 2,2'-bipyridyl (0.2 mmol), sodium hydroxide(0.5 mmol) and water (12 ml) was stirred for 30 min under air. The mixture was then transferred to a 25 ml Teflon-lined autoclave and was kept at 443 K for 72 h. Colorless prisms of the title compound were obtained from the reaction mixture after cooling to room temperature.

S3. Refinement

All H atoms were placed in calculated positions with C—H = 0.93Å for aromatic C-H functions and 0.82 Å for hydroxyl groups. Hydrogens were refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

A view of the molecular structure of the title compound, showing the atomic numbering scheme and 50% probability displacement ellipsoids.

Figure 2

The packing diagram of the title compound.

Bis(μ -2'-carboxylatobiphenyl-2-carboxylic acid- $\kappa^2 O^2: O^2$)bis[(2,2'-bipyridine- $\kappa^2 N, N'$)(2'-carboxylatobiphenyl-2-carboxylic acid- κO^2)zinc(II)]

Crystal data

$[Zn_2(C_{14}H_9O_4)_4(C_{10}H_8N_2)_2]$	Z = 1
$M_r = 1407.96$	F(000) = 724
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.483 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.8745 (4) Å	Cell parameters from 6287 reflections
b = 11.6465 (4) Å	$\theta = 2.5 - 28.2^{\circ}$
c = 14.0223 (5) Å	$\mu = 0.84 \text{ mm}^{-1}$
$\alpha = 103.094 \ (1)^{\circ}$	T = 293 K
$\beta = 112.773 \ (1)^{\circ}$	Block, translucent
$\gamma = 92.680 \ (1)^{\circ}$	$0.12 \times 0.10 \times 0.08 \text{ mm}$
$V = 1576.9 (1) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector	10807 measured reflections
diffractometer	5332 independent reflections
Radiation source: fine-focus sealed tube	4820 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.014$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(<i>SADABS</i> ; Bruker, 2001)	$k = -13 \rightarrow 13$
$T_{\min} = 0.906, T_{\max} = 0.936$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.00	H-atom parameters not refined
5332 reflections	$w = 1/[\sigma^2(F_o^2) + (0.08P)^2]$
444 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.29$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.25$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Zn1	0.852166 (18)	0.917078 (17)	0.648679 (15)	0.03426 (10)
C1	1.04604 (17)	0.86670 (15)	0.35850 (14)	0.0326 (4)
C2	0.95130 (17)	0.75294 (15)	0.32443 (13)	0.0320 (4)
C3	0.82737 (18)	0.73778 (17)	0.23642 (14)	0.0370 (4)
Н3	0.8065	0.7990	0.2029	0.044*
C4	0.7356 (2)	0.63560 (18)	0.19791 (15)	0.0436 (5)
H4	0.6547	0.6274	0.1386	0.052*
C5	0.7648 (2)	0.54537 (18)	0.24809 (16)	0.0464 (5)
Н5	0.7027	0.4763	0.2237	0.056*
C6	0.8865 (2)	0.55764 (17)	0.33480 (16)	0.0421 (4)
H6	0.9054	0.4958	0.3677	0.050*
C7	0.98164 (18)	0.65955 (15)	0.37432 (14)	0.0333 (4)
C8	1.11438 (18)	0.65573 (16)	0.46245 (16)	0.0381 (4)
С9	1.1866 (2)	0.56587 (19)	0.43731 (19)	0.0512 (5)
Н9	1.1517	0.5144	0.3686	0.061*
C10	1.3082 (2)	0.5520 (2)	0.5122 (2)	0.0639 (7)

H10	1.3538	0.4910	0.4940	0.077*
C11	1.3621 (2)	0.6283 (2)	0.6136 (2)	0.0630 (7)
H11	1.4452	0.6200	0.6636	0.076*
C12	1.2928 (2)	0.7173 (2)	0.64123 (18)	0.0500 (5)
H12	1.3292	0.7684	0.7101	0.060*
C13	1.16833 (18)	0.73104 (17)	0.56643 (15)	0.0388 (4)
C14	1.09428 (18)	0.82548 (17)	0.60017 (14)	0.0369 (4)
C15	0.66830 (19)	0.74974 (17)	0.43258 (15)	0.0418 (4)
H15	0.7471	0.7338	0.4242	0.050*
C16	0.5473 (2)	0.68971 (19)	0.35408 (16)	0.0478 (5)
H16	0.5443	0.6338	0.2939	0.057*
C17	0.4306 (2)	0.71328 (19)	0.36542 (16)	0.0475 (5)
H17	0.3474	0.6733	0.3131	0.057*
C18	0.43798 (18)	0.79707 (18)	0.45546 (15)	0.0410 (4)
H18	0.3598	0.8147	0.4641	0.049*
C19	0.56275 (17)	0.85434 (15)	0.53254 (14)	0.0319 (4)
C20	0.57917 (18)	0.94393 (15)	0.63252 (14)	0.0327 (4)
C21	0.4710 (2)	0.97965 (18)	0.65380 (16)	0.0421 (4)
H21	0.3831	0.9495	0.6042	0.050*
C22	0.4958 (2)	1.0608 (2)	0.74987 (18)	0.0533 (5)
H22	0.4245	1.0858	0.7661	0.064*
C23	0.6265 (2)	1.1043 (2)	0.82138 (19)	0.0578 (6)
H23	0.6450	1.1583	0.8870	0.069*
C24	0.7292 (2)	1.06703 (19)	0.79452 (16)	0.0498 (5)
H24	0.8178	1.0976	0.8425	0.060*
C25	0.89081 (19)	0.77209 (16)	0.79160 (14)	0.0363 (4)
C26	0.97304 (19)	0.72768 (16)	0.88630 (14)	0.0359 (4)
C27	1.0903 (2)	0.68258 (19)	0.88947 (16)	0.0470 (5)
H27	1.1207	0.6867	0.8366	0.056*
C28	1.1621 (2)	0.63166 (19)	0.97031 (17)	0.0501 (5)
H28	1.2391	0.5997	0.9707	0.060*
C29	1.1194 (2)	0.62845 (18)	1.05020 (16)	0.0480 (5)
H29	1.1679	0.5948	1.1050	0.058*
C30	1.00411 (19)	0.67535 (17)	1.04919 (14)	0.0406 (4)
H30	0.9764	0.6733	1.1039	0.049*
C31	0.92915 (18)	0.72541 (15)	0.96747 (13)	0.0332 (4)
C32	0.81105 (19)	0.78099 (16)	0.97435 (13)	0.0364 (4)
C33	0.8325 (2)	0.90124 (19)	1.02957 (16)	0.0503 (5)
H33	0.9165	0.9467	1.0534	0.060*
C34	0.7298 (3)	0.9532 (2)	1.04906 (19)	0.0693 (8)
H34	0.7447	1.0338	1.0844	0.083*
C35	0.6045 (3)	0.8859 (3)	1.0162 (2)	0.0732 (8)
H35	0.5368	0.9206	1.0316	0.088*
C36	0.5812 (3)	0.7675 (2)	0.9608 (2)	0.0614 (6)
H36	0.4974	0.7223	0.9383	0.074*
C37	0.6829 (2)	0.71558 (19)	0.93839 (16)	0.0447 (5)
C38	0.64762 (19)	0.58724 (19)	0.87503 (17)	0.0460 (5)
N1	0.67766 (14)	0.83087 (13)	0.52131 (11)	0.0339 (3)

N2	0.70656 (15)	0.98810 (13)	0.70158 (12)	0.0356 (3)
01	1.15618 (13)	0.88852 (13)	0.43496 (12)	0.0513 (4)
O2	1.00560 (12)	0.94223 (11)	0.30197 (10)	0.0394 (3)
03	0.97207 (13)	0.81690 (13)	0.56208 (10)	0.0435 (3)
O4	1.17363 (13)	0.91838 (13)	0.67693 (12)	0.0498 (4)
H4A	1.1282	0.9697	0.6883	0.075*
05	0.95305 (13)	0.84733 (13)	0.76743 (11)	0.0459 (3)
06	0.76884 (14)	0.73196 (13)	0.74187 (11)	0.0496 (4)
07	0.68307 (16)	0.55831 (13)	0.79382 (12)	0.0510 (4)
H7	0.7080	0.6191	0.7820	0.076*
08	0.58752 (17)	0.51275 (17)	0.89517 (14)	0.0684 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Zn1	0.02564 (15)	0.03895 (15)	0.03585 (15)	-0.00024 (10)	0.00903 (10)	0.01293 (10)
C1	0.0297 (9)	0.0355 (9)	0.0371 (9)	0.0049 (7)	0.0174 (8)	0.0115 (7)
C2	0.0310 (9)	0.0354 (9)	0.0337 (9)	0.0048 (7)	0.0176 (7)	0.0093 (7)
C3	0.0361 (10)	0.0421 (10)	0.0343 (9)	0.0021 (8)	0.0152 (8)	0.0120 (8)
C4	0.0379 (11)	0.0529 (12)	0.0340 (10)	-0.0039 (9)	0.0124 (8)	0.0066 (8)
C5	0.0459 (12)	0.0391 (10)	0.0493 (11)	-0.0092 (9)	0.0220 (10)	0.0012 (9)
C6	0.0480 (11)	0.0333 (10)	0.0487 (11)	0.0038 (9)	0.0234 (9)	0.0118 (8)
C7	0.0355 (9)	0.0315 (9)	0.0379 (9)	0.0046 (7)	0.0201 (8)	0.0094 (7)
C8	0.0354 (10)	0.0377 (10)	0.0510 (11)	0.0093 (8)	0.0209 (9)	0.0235 (8)
C9	0.0534 (13)	0.0434 (11)	0.0707 (14)	0.0173 (10)	0.0340 (11)	0.0238 (10)
C10	0.0569 (14)	0.0620 (14)	0.097 (2)	0.0334 (13)	0.0414 (14)	0.0428 (15)
C11	0.0408 (12)	0.0788 (17)	0.0857 (18)	0.0242 (12)	0.0231 (12)	0.0542 (15)
C12	0.0348 (11)	0.0653 (14)	0.0557 (12)	0.0089 (10)	0.0144 (9)	0.0343 (11)
C13	0.0305 (10)	0.0461 (11)	0.0480 (11)	0.0069 (8)	0.0166 (8)	0.0268 (9)
C14	0.0309 (10)	0.0471 (11)	0.0340 (9)	0.0030 (8)	0.0121 (8)	0.0159 (8)
C15	0.0359 (10)	0.0464 (11)	0.0423 (10)	0.0064 (8)	0.0185 (8)	0.0058 (8)
C16	0.0420 (11)	0.0499 (12)	0.0430 (11)	-0.0009 (9)	0.0164 (9)	-0.0003 (9)
C17	0.0334 (10)	0.0535 (12)	0.0421 (11)	-0.0071 (9)	0.0087 (8)	0.0024 (9)
C18	0.0276 (9)	0.0482 (11)	0.0453 (11)	0.0006 (8)	0.0154 (8)	0.0087 (9)
C19	0.0283 (9)	0.0342 (9)	0.0351 (9)	0.0016 (7)	0.0132 (7)	0.0129 (7)
C20	0.0317 (9)	0.0318 (9)	0.0381 (9)	0.0006 (7)	0.0158 (8)	0.0140 (7)
C21	0.0346 (10)	0.0453 (11)	0.0465 (11)	0.0007 (8)	0.0191 (8)	0.0091 (9)
C22	0.0507 (13)	0.0569 (13)	0.0563 (13)	0.0041 (10)	0.0320 (11)	0.0049 (10)
C23	0.0617 (14)	0.0565 (13)	0.0489 (12)	0.0003 (11)	0.0277 (11)	-0.0053 (10)
C24	0.0448 (12)	0.0495 (12)	0.0429 (11)	-0.0019 (10)	0.0119 (9)	0.0019 (9)
C25	0.0442 (11)	0.0356 (9)	0.0334 (9)	0.0102 (8)	0.0186 (8)	0.0115 (7)
C26	0.0391 (10)	0.0312 (9)	0.0361 (9)	0.0043 (8)	0.0133 (8)	0.0105 (7)
C27	0.0465 (12)	0.0519 (12)	0.0475 (11)	0.0127 (10)	0.0222 (10)	0.0163 (9)
C28	0.0425 (12)	0.0478 (12)	0.0552 (13)	0.0157 (10)	0.0137 (10)	0.0143 (10)
C29	0.0479 (12)	0.0449 (11)	0.0414 (11)	0.0107 (10)	0.0053 (9)	0.0158 (9)
C30	0.0441 (11)	0.0400 (10)	0.0317 (9)	0.0043 (9)	0.0092 (8)	0.0100 (8)
C31	0.0348 (10)	0.0286 (8)	0.0290 (8)	-0.0001 (7)	0.0073 (7)	0.0053 (7)
C32	0.0430 (11)	0.0382 (10)	0.0270 (9)	0.0089 (8)	0.0113 (8)	0.0116 (7)

supporting information

C33	0.0672 (14)	0.0443 (11)	0.0362 (10)	0.0150 (10)	0.0174 (10)	0.0101 (8)	
C34	0.109 (2)	0.0605 (15)	0.0535 (14)	0.0457 (16)	0.0412 (15)	0.0235 (12)	
C35	0.085 (2)	0.092 (2)	0.0759 (17)	0.0533 (18)	0.0524 (16)	0.0417 (16)	
C36	0.0525 (14)	0.0817 (17)	0.0691 (15)	0.0294 (13)	0.0319 (12)	0.0390 (13)	
C37	0.0417 (11)	0.0555 (12)	0.0406 (10)	0.0136 (10)	0.0142 (9)	0.0230 (9)	
C38	0.0310 (10)	0.0513 (12)	0.0474 (11)	0.0012 (9)	0.0042 (8)	0.0201 (9)	
N1	0.0287 (8)	0.0384 (8)	0.0361 (8)	0.0033 (6)	0.0136 (6)	0.0124 (6)	
N2	0.0317 (8)	0.0346 (8)	0.0380 (8)	-0.0005 (6)	0.0123 (6)	0.0094 (6)	
O1	0.0352 (8)	0.0526 (8)	0.0558 (9)	-0.0070 (6)	0.0030 (7)	0.0260 (7)	
O2	0.0342 (7)	0.0366 (7)	0.0483 (8)	0.0024 (5)	0.0130 (6)	0.0203 (6)	
O3	0.0279 (7)	0.0572 (8)	0.0404 (7)	0.0044 (6)	0.0132 (6)	0.0052 (6)	
O4	0.0307 (7)	0.0553 (9)	0.0516 (8)	0.0009 (6)	0.0108 (6)	0.0038 (7)	
O5	0.0429 (8)	0.0544 (8)	0.0501 (8)	0.0091 (7)	0.0206 (6)	0.0289 (7)	
O6	0.0453 (9)	0.0557 (9)	0.0412 (7)	-0.0014 (7)	0.0069 (6)	0.0218 (7)	
O7	0.0520 (9)	0.0432 (8)	0.0482 (8)	-0.0056 (7)	0.0126 (7)	0.0108 (6)	
08	0.0558 (10)	0.0727 (11)	0.0721 (11)	-0.0142 (9)	0.0195 (8)	0.0273 (9)	

Geometric parameters (Å, °)

Zn1—O5	1.9795 (12)	C19—C20	1.487 (2)
Zn1—O2 ⁱ	1.9941 (13)	C20—N2	1.338 (2)
Zn1—N1	2.0456 (15)	C20—C21	1.381 (3)
Zn1—N2	2.1203 (15)	C21—C22	1.378 (3)
Zn1—O3	2.2940 (13)	C21—H21	0.9300
C101	1.226 (2)	C22—C23	1.372 (3)
C1—O2	1.295 (2)	C22—H22	0.9300
C1—C2	1.500 (3)	C23—C24	1.369 (3)
С2—С7	1.407 (2)	С23—Н23	0.9300
С2—С3	1.401 (2)	C24—N2	1.339 (3)
C3—C4	1.373 (3)	C24—H24	0.9300
С3—Н3	0.9300	C25—O6	1.242 (2)
C4—C5	1.376 (3)	C25—O5	1.264 (2)
C4—H4	0.9300	C25—C26	1.505 (2)
С5—С6	1.382 (3)	C26—C27	1.390 (3)
С5—Н5	0.9300	C26—C31	1.399 (3)
С6—С7	1.389 (3)	C27—C28	1.382 (3)
С6—Н6	0.9300	С27—Н27	0.9300
С7—С8	1.504 (2)	C28—C29	1.376 (3)
C8—C13	1.396 (3)	C28—H28	0.9300
С8—С9	1.400 (3)	C29—C30	1.387 (3)
C9—C10	1.378 (3)	С29—Н29	0.9300
С9—Н9	0.9300	C30—C31	1.393 (2)
C10-C11	1.374 (4)	С30—Н30	0.9300
С10—Н10	0.9300	C31—C32	1.491 (3)
C11—C12	1.382 (3)	C32—C37	1.400 (3)
С11—Н11	0.9300	C32—C33	1.398 (3)
C12—C13	1.398 (3)	C33—C34	1.383 (3)
С12—Н12	0.9300	С33—Н33	0.9300

C13—C14	1.491 (3)	C34—C35	1.391 (4)
C14—O3	1.215 (2)	С34—Н34	0.9300
C14—O4	1.319 (2)	C35—C36	1.378 (4)
C15—N1	1.346 (2)	С35—Н35	0.9300
C15—C16	1.370 (3)	C36—C37	1.390 (3)
С15—Н15	0.9300	C36—H36	0.9300
C16—C17	1.371 (3)	C37—C38	1.500 (3)
C16—H16	0.9300	C38—O8	1.208 (3)
C17 - C18	1 382 (3)	C38—07	1.200(3) 1.318(3)
C17—H17	0.9300	$\Omega^2 - Zn1^i$	1 9941 (13)
C18 - C19	1 381 (3)	04—H4A	0.8200
C18—H18	0.9300	07—H7	0.8200
C19 N1	1 351 (2)	0, 11,	0.0200
	1.551 (2)		
$O5$ —Zn1— $O2^{i}$	94.20 (5)	N2—C20—C19	115.57 (15)
O5—Zn1—N1	123.40 (6)	C21—C20—C19	122.76 (16)
$O2^{i}$ —Zn1—N1	141.68 (6)	C22—C21—C20	118.79 (19)
O5—Zn1—N2	100.24 (6)	C22—C21—H21	120.6
O2 ⁱ —Zn1—N2	102.90 (6)	C20—C21—H21	120.6
N1—Zn1—N2	79.34 (6)	C23—C22—C21	119.44 (19)
O5—Zn1—O3	85.49 (5)	C23—C22—H22	120.3
O2 ⁱ —Zn1—O3	86.73 (5)	C21—C22—H22	120.3
N1—Zn1—O3	88.97 (5)	C24—C23—C22	118.9 (2)
N2—Zn1—O3	168.28 (5)	C24—C23—H23	120.6
O1—C1—O2	120.88 (17)	С22—С23—Н23	120.6
O1—C1—C2	122.88 (16)	N2—C24—C23	122.3 (2)
O2—C1—C2	116.24 (15)	N2—C24—H24	118.9
C7—C2—C3	118.33 (17)	C23—C24—H24	118.9
C7—C2—C1	123.57 (16)	O6—C25—O5	124.57 (17)
C3—C2—C1	118.08 (15)	O6—C25—C26	118.81 (17)
C4—C3—C2	122.22 (18)	O5—C25—C26	116.61 (17)
С4—С3—Н3	118.9	C27—C26—C31	119.98 (16)
С2—С3—Н3	118.9	C27—C26—C25	119.06 (16)
C3—C4—C5	119.23 (18)	C31—C26—C25	120.87 (16)
C3—C4—H4	120.4	C26—C27—C28	120.69 (19)
C5—C4—H4	120.4	С26—С27—Н27	119.7
C6—C5—C4	119.80 (19)	C28—C27—H27	119.7
С6—С5—Н5	120.1	C29—C28—C27	119.74 (18)
С4—С5—Н5	120.1	C29—C28—H28	120.1
C5—C6—C7	121.99 (18)	C27—C28—H28	120.1
С5—С6—Н6	119.0	C28—C29—C30	120.14 (18)
С7—С6—Н6	119.0	С28—С29—Н29	119.9
C6—C7—C2	118.41 (17)	С30—С29—Н29	119.9
C6—C7—C8	116.00 (16)	C31—C30—C29	120.97 (18)
С2—С7—С8	125.39 (16)	С31—С30—Н30	119.5
C13—C8—C9	118.14 (18)	С29—С30—Н30	119.5
C13—C8—C7	125.70 (16)	C30—C31—C26	118.45 (17)
C9—C8—C7	116.13 (18)	C30—C31—C32	118.44 (16)
	. /		

C10—C9—C8	121.4 (2)	C26—C31—C32	123.00 (15)
С10—С9—Н9	119.3	C37—C32—C33	118.25 (19)
С8—С9—Н9	119.3	C37—C32—C31	122.99 (16)
C11—C10—C9	120.1 (2)	C33—C32—C31	118.39 (18)
C11—C10—H10	119.9	C34—C33—C32	120.6 (2)
С9—С10—Н10	119.9	С34—С33—Н33	119.7
C10-C11-C12	119.9 (2)	С32—С33—Н33	119.7
C10—C11—H11	120.0	C33—C34—C35	120.5 (2)
C12—C11—H11	120.0	С33—С34—Н34	119.8
C13—C12—C11	120.5 (2)	С35—С34—Н34	119.8
C13—C12—H12	119.8	C34—C35—C36	119.8 (2)
C11—C12—H12	119.8	С34—С35—Н35	120.1
C8—C13—C12	119.93 (18)	С36—С35—Н35	120.1
C8—C13—C14	121.07 (16)	C37—C36—C35	120.0 (3)
C12—C13—C14	118.99 (18)	С37—С36—Н36	120.0
O3—C14—O4	122.94 (17)	С35—С36—Н36	120.0
O3—C14—C13	123.24 (18)	C32—C37—C36	120.9 (2)
O4—C14—C13	113.81 (15)	C32—C37—C38	122.62 (17)
N1-C15-C16	122.57 (17)	C36—C37—C38	116.5 (2)
N1—C15—H15	118.7	O8—C38—O7	120.5 (2)
C16—C15—H15	118.7	O8—C38—C37	122.5 (2)
C15—C16—C17	119.07 (18)	O7—C38—C37	117.02 (18)
C15—C16—H16	120.5	C15—N1—C19	118.43 (16)
C17—C16—H16	120.5	C15—N1—Zn1	126.19 (12)
C16—C17—C18	119.23 (18)	C19—N1—Zn1	115.26 (12)
С16—С17—Н17	120.4	C20—N2—C24	118.92 (16)
C18—C17—H17	120.4	C20—N2—Zn1	113.63 (11)
C19—C18—C17	119.30 (17)	C24—N2—Zn1	127.42 (14)
C19—C18—H18	120.4	$C1$ — $O2$ — $Zn1^i$	111.14 (11)
C17—C18—H18	120.3	C14—O3—Zn1	123.99 (12)
N1-C19-C18	121.39 (16)	C14—O4—H4A	109.5
N1-C19-C20	116.12 (15)	C25—O5—Zn1	119.66 (12)
C18—C19—C20	122.49 (16)	С38—О7—Н7	109.5
N2-C20-C21	121.67 (17)		

Symmetry code: (i) -x+2, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
O4—H4A···O2 ⁱ	0.82	1.85	2.6545 (19)	167
O7—H7…O6	0.82	1.74	2.551 (2)	170

Symmetry code: (i) -x+2, -y+2, -z+1.