organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,4,5-Tri­meth­oxy­phen­yl)-1H-pyrrolo[2,3-b]pyridine

aEberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany, bUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and cc-a-i-r biosciences GmbH, Paul-Ehrlich-Strasse 15, 72076 Tuebingen, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 2 November 2009; accepted 10 November 2009; online 14 November 2009)

In the title compound, C16H16N2O3, the 3,4,5-trimethoxy­phenyl group makes a dihedral angle of 10.04 (7)° toward the 1H-pyrrolo[2,3-b]pyridine system. The crystal structure displays inter­molecular N—H⋯N hydrogen bonds, forming inversion dimers.

Related literature

For the synthesis of the title copmpound, see: Davis et al. (1992[Davis, M. L., Wakewfield, B. J. & Wardellt, J. A. (1992). Tetrahedron, 48, 939-952.])

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3

  • Mr = 284.31

  • Monoclinic, P 21 /c

  • a = 7.6283 (9) Å

  • b = 10.1745 (4) Å

  • c = 18.604 (2) Å

  • β = 104.778 (6)°

  • V = 1396.2 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 193 K

  • 0.40 × 0.40 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2865 measured reflections

  • 2657 independent reflections

  • 2352 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.07

  • 2657 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N7i 0.95 2.12 3.061 (2) 171
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

7-Azaindoles are found in natural and synthetic compounds of biological interest. The interest in 7-azaindoles as indole analogues has arisen in recent years due to their improved physicochemical and pharmacological properties. The substitution of this heterocycle is widely studied and used in synthesis of many compounds of potential pharmaceutical interest. The 3,4,5-trimethoxyphenyl moiety encloses a dihedral angle of 10.04 (7)° toward the 1H-pyrrolo[2,3-b]pyridine system. The crystal structure of 2-(3,4,5-trimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine, C16H16N2O3, is characterized by an intermolecular hydrogen bond N1–H1···N7 (2.12 Å).

Related literature top

For the synthesis of the title copmpound, see: Davis et al. (1992)

Experimental top

3-Methylpyridine (0.68 g 7.25 mmol) was added dropwise to a freshly prepared solution of LDA in THF (2M) (3.6 ml 7.25 mmol) at 273 K. The resulting suspension was stirred at 273 K for 30 min. Trimethoxybenzonitrile (1.4 g 7.25 mmol) was added dropwise at such a rate that the temperature did not rise above 283 K. Stirring was continued for 60 min. at 273 K. Another portion of LDA solution (3.6 ml 7.25 mmol) was added and stirring was continued for 10 h at 353 K. The final reaction mixture was allowed to cool and ice-water was added. The mixture was extracted with ethylacetate and the combined extracts were dried (Na2SO4) and the solvent was evaporated under reduced pressure. The residue was subjected to flash chromatography. The title compound was obtained in a yield of 67% (1.37 g 4.83 mmol). Crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent (methanol) during several weeks.

Refinement top

Hydrogen atoms attached to carbon were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). The H atom attached to N1 was located in difference Fourier maps. All H atoms were refined using the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
2-(3,4,5-Trimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine top
Crystal data top
C16H16N2O3F(000) = 600
Mr = 284.31Dx = 1.353 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.6283 (9) Åθ = 66–70°
b = 10.1745 (4) ŵ = 0.78 mm1
c = 18.604 (2) ÅT = 193 K
β = 104.778 (6)°Plate, colourless
V = 1396.2 (2) Å30.40 × 0.40 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
Radiation source: rotating anodeθmax = 70.0°, θmin = 4.9°
Graphite monochromatorh = 90
ω/2θ scansk = 012
2865 measured reflectionsl = 2122
2657 independent reflections3 standard reflections every 60 min
2352 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.5259P]
where P = (Fo2 + 2Fc2)/3
2657 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H16N2O3V = 1396.2 (2) Å3
Mr = 284.31Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.6283 (9) ŵ = 0.78 mm1
b = 10.1745 (4) ÅT = 193 K
c = 18.604 (2) Å0.40 × 0.40 × 0.25 mm
β = 104.778 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
2865 measured reflections3 standard reflections every 60 min
2657 independent reflections intensity decay: 2%
2352 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
2657 reflectionsΔρmin = 0.21 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.62152 (18)0.53967 (13)0.42466 (7)0.0312 (3)
H10.63990.48020.46530.037*
C20.7269 (2)0.55266 (16)0.37403 (8)0.0308 (3)
C30.6670 (2)0.65831 (17)0.32906 (9)0.0360 (4)
H30.71580.68880.28990.043*
C3A0.5187 (2)0.71430 (17)0.35131 (9)0.0344 (4)
C40.4017 (3)0.82022 (19)0.32915 (10)0.0451 (4)
H40.41200.87620.28960.054*
C50.2705 (3)0.8406 (2)0.36686 (11)0.0524 (5)
H50.18880.91230.35360.063*
C60.2568 (3)0.7568 (2)0.42413 (11)0.0492 (5)
H60.16290.77360.44810.059*
N70.3663 (2)0.65397 (15)0.44823 (8)0.0381 (4)
C7A0.4931 (2)0.63661 (16)0.41105 (9)0.0310 (3)
C80.8710 (2)0.45896 (16)0.37109 (8)0.0307 (3)
C90.9838 (2)0.48432 (16)0.32401 (9)0.0330 (4)
H90.97110.56400.29660.040*
C101.1137 (2)0.39363 (17)0.31741 (9)0.0324 (4)
C111.1358 (2)0.27617 (16)0.35828 (9)0.0313 (3)
C121.0243 (2)0.25251 (16)0.40535 (9)0.0326 (4)
C130.8925 (2)0.34277 (16)0.41142 (9)0.0338 (4)
H130.81640.32490.44350.041*
O141.22631 (17)0.40749 (13)0.27123 (7)0.0439 (3)
C151.1984 (3)0.5172 (2)0.22231 (10)0.0454 (5)
H15A1.07200.51860.19290.068*
H15B1.27870.51030.18890.068*
H15C1.22530.59840.25130.068*
O161.25139 (16)0.17927 (12)0.34718 (7)0.0376 (3)
C171.4407 (2)0.2090 (2)0.37068 (11)0.0458 (4)
H17A1.47220.27110.33570.069*
H17B1.51100.12810.37210.069*
H17C1.46840.24840.42040.069*
O181.03203 (16)0.13515 (12)0.44277 (7)0.0399 (3)
C191.1896 (3)0.1164 (2)0.50170 (11)0.0518 (5)
H19A1.29530.10620.48130.078*
H19B1.17530.03720.52970.078*
H19C1.20730.19280.53490.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0357 (7)0.0303 (7)0.0307 (7)0.0044 (5)0.0140 (5)0.0038 (5)
C20.0334 (8)0.0312 (8)0.0295 (7)0.0014 (6)0.0112 (6)0.0015 (6)
C30.0419 (9)0.0371 (9)0.0310 (8)0.0024 (7)0.0134 (7)0.0049 (7)
C3A0.0397 (9)0.0348 (8)0.0283 (8)0.0025 (7)0.0082 (6)0.0019 (6)
C40.0566 (11)0.0429 (10)0.0369 (9)0.0136 (9)0.0135 (8)0.0129 (8)
C50.0596 (12)0.0519 (12)0.0470 (10)0.0276 (10)0.0161 (9)0.0138 (9)
C60.0513 (11)0.0563 (12)0.0445 (10)0.0241 (9)0.0203 (8)0.0092 (9)
N70.0427 (8)0.0400 (8)0.0345 (7)0.0116 (6)0.0149 (6)0.0044 (6)
C7A0.0346 (8)0.0298 (8)0.0281 (7)0.0025 (6)0.0072 (6)0.0008 (6)
C80.0328 (8)0.0304 (8)0.0301 (7)0.0012 (6)0.0101 (6)0.0018 (6)
C90.0383 (8)0.0310 (8)0.0317 (8)0.0001 (7)0.0127 (7)0.0024 (6)
C100.0358 (8)0.0356 (9)0.0289 (7)0.0028 (7)0.0138 (6)0.0018 (6)
C110.0334 (8)0.0300 (8)0.0318 (8)0.0003 (6)0.0104 (6)0.0045 (6)
C120.0361 (8)0.0287 (8)0.0339 (8)0.0024 (6)0.0109 (6)0.0016 (6)
C130.0347 (8)0.0360 (9)0.0346 (8)0.0002 (7)0.0162 (7)0.0027 (7)
O140.0502 (7)0.0475 (8)0.0431 (7)0.0089 (6)0.0285 (6)0.0092 (6)
C150.0417 (9)0.0565 (12)0.0424 (10)0.0042 (8)0.0184 (8)0.0123 (8)
O160.0388 (6)0.0343 (6)0.0422 (6)0.0041 (5)0.0148 (5)0.0042 (5)
C170.0393 (10)0.0520 (11)0.0466 (10)0.0033 (8)0.0121 (8)0.0037 (9)
O180.0414 (7)0.0327 (6)0.0457 (7)0.0015 (5)0.0113 (5)0.0095 (5)
C190.0540 (12)0.0544 (12)0.0426 (10)0.0083 (9)0.0041 (9)0.0139 (9)
Geometric parameters (Å, º) top
N1—C7A1.367 (2)C10—O141.3681 (19)
N1—C21.3917 (19)C10—C111.403 (2)
N1—H10.9499C11—O161.3729 (19)
C2—C31.367 (2)C11—C121.389 (2)
C2—C81.467 (2)C12—O181.3758 (19)
C3—C3A1.419 (2)C12—C131.387 (2)
C3—H30.9500C13—H130.9500
C3A—C41.393 (2)O14—C151.422 (2)
C3A—C7A1.417 (2)C15—H15A0.9800
C4—C51.377 (3)C15—H15B0.9800
C4—H40.9500C15—H15C0.9800
C5—C61.389 (3)O16—C171.430 (2)
C5—H50.9500C17—H17A0.9800
C6—N71.343 (2)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
N7—C7A1.336 (2)O18—C191.418 (2)
C8—C131.387 (2)C19—H19A0.9800
C8—C91.400 (2)C19—H19B0.9800
C9—C101.382 (2)C19—H19C0.9800
C9—H90.9500
C7A—N1—C2108.43 (13)O14—C10—C11114.85 (14)
C7A—N1—H1124.1C9—C10—C11120.66 (14)
C2—N1—H1127.2O16—C11—C12119.38 (15)
C3—C2—N1109.17 (14)O16—C11—C10121.53 (14)
C3—C2—C8128.68 (14)C12—C11—C10118.76 (14)
N1—C2—C8122.09 (14)O18—C12—C13118.16 (14)
C2—C3—C3A107.69 (14)O18—C12—C11121.02 (14)
C2—C3—H3126.2C13—C12—C11120.64 (15)
C3A—C3—H3126.2C12—C13—C8120.57 (14)
C4—C3A—C7A117.21 (16)C12—C13—H13119.7
C4—C3A—C3136.27 (16)C8—C13—H13119.7
C7A—C3A—C3106.52 (14)C10—O14—C15117.87 (13)
C5—C4—C3A117.38 (16)O14—C15—H15A109.5
C5—C4—H4121.3O14—C15—H15B109.5
C3A—C4—H4121.3H15A—C15—H15B109.5
C4—C5—C6120.36 (17)O14—C15—H15C109.5
C4—C5—H5119.8H15A—C15—H15C109.5
C6—C5—H5119.8H15B—C15—H15C109.5
N7—C6—C5124.90 (17)C11—O16—C17116.03 (13)
N7—C6—H6117.5O16—C17—H17A109.5
C5—C6—H6117.6O16—C17—H17B109.5
C7A—N7—C6113.64 (15)H17A—C17—H17B109.5
N7—C7A—N1125.32 (14)O16—C17—H17C109.5
N7—C7A—C3A126.50 (15)H17A—C17—H17C109.5
N1—C7A—C3A108.18 (14)H17B—C17—H17C109.5
C13—C8—C9119.24 (15)C12—O18—C19115.25 (14)
C13—C8—C2121.36 (14)O18—C19—H19A109.5
C9—C8—C2119.33 (14)O18—C19—H19B109.5
C10—C9—C8120.12 (15)H19A—C19—H19B109.5
C10—C9—H9119.9O18—C19—H19C109.5
C8—C9—H9119.9H19A—C19—H19C109.5
O14—C10—C9124.47 (15)H19B—C19—H19C109.5
C7A—N1—C2—C30.71 (18)C13—C8—C9—C100.7 (2)
C7A—N1—C2—C8176.55 (14)C2—C8—C9—C10176.40 (14)
N1—C2—C3—C3A0.21 (19)C8—C9—C10—O14177.84 (15)
C8—C2—C3—C3A176.82 (16)C8—C9—C10—C110.8 (2)
C2—C3—C3A—C4179.8 (2)O14—C10—C11—O165.2 (2)
C2—C3—C3A—C7A0.35 (19)C9—C10—C11—O16173.52 (14)
C7A—C3A—C4—C50.2 (3)O14—C10—C11—C12178.56 (14)
C3—C3A—C4—C5179.6 (2)C9—C10—C11—C120.2 (2)
C3A—C4—C5—C60.6 (3)O16—C11—C12—O182.1 (2)
C4—C5—C6—N71.1 (4)C10—C11—C12—O18175.55 (14)
C5—C6—N7—C7A0.7 (3)O16—C11—C12—C13172.96 (15)
C6—N7—C7A—N1179.77 (17)C10—C11—C12—C130.5 (2)
C6—N7—C7A—C3A0.1 (3)O18—C12—C13—C8175.80 (14)
C2—N1—C7A—N7179.17 (15)C11—C12—C13—C80.6 (2)
C2—N1—C7A—C3A0.92 (18)C9—C8—C13—C120.0 (2)
C4—C3A—C7A—N70.6 (3)C2—C8—C13—C12177.04 (15)
C3—C3A—C7A—N7179.31 (16)C9—C10—O14—C155.3 (2)
C4—C3A—C7A—N1179.33 (15)C11—C10—O14—C15173.38 (15)
C3—C3A—C7A—N10.79 (18)C12—C11—O16—C17117.52 (17)
C3—C2—C8—C13167.47 (17)C10—C11—O16—C1769.2 (2)
N1—C2—C8—C139.2 (2)C13—C12—O18—C19113.18 (18)
C3—C2—C8—C99.5 (3)C11—C12—O18—C1971.7 (2)
N1—C2—C8—C9173.77 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.952.123.061 (2)171
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H16N2O3
Mr284.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)7.6283 (9), 10.1745 (4), 18.604 (2)
β (°) 104.778 (6)
V3)1396.2 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.78
Crystal size (mm)0.40 × 0.40 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2865, 2657, 2352
Rint0.020
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.07
No. of reflections2657
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.952.123.061 (2)171
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors would like to thank the Federal Ministry of Education and Research, Germany, Merckle GmbH, Ulm, Germany, and the Fonds der Chemischen Industrie, Germany, for their generous support of this work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDavis, M. L., Wakewfield, B. J. & Wardellt, J. A. (1992). Tetrahedron, 48, 939–952.  CrossRef CAS Web of Science Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds