

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2-ethoxycarbonylethyl- $\kappa^2 C^1$,O)(2thioxo-1,3-dithiole-4,5-dithiolato- $\kappa^2 S^4, S^5$)tin(IV)

Geraldo M. de Lima,^a Solange M. S. V. Wardell,^b James L. Wardell^a[‡] and Edward R. T. Tiekink^c*

^aDepartamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, ^bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 11 November 2009; accepted 17 November 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.007 Å; R factor = 0.029; wR factor = 0.064; data-to-parameter ratio = 18.5.

In the title compound, $[Sn(C_5H_9O_2)_2(C_3S_5)]$, the immediate environment around the Sn centre is defined by two S and two C atoms that define an approximately tetrahedral geometry. The close approach of the pendant carbonyl O atoms [Sn-O = 2.577(3) and 2.573(3)Å] increases the coordination number to six. Supramolecular chains are formed along the a axis in the crystal structure owing to the presence of C- $H \cdots O$ contacts.

Related literature

For original industrial interest in functionally substitutedalkyl-tin compounds, see: Lanigen & Weinberg (1976). For studies concerning the coordination chemistry of functionally substituted-alkyl-tin compounds, see: Harrison et al. (1979); Balasubramanian et al. (1997); Milne et al. (2005); Tian et al. (2005); de Lima et al. (2009). For related structures of functionally substituted-alkyl-tin compounds, see: Buchanan et al. (1996); Howie & Wardell, (2001). For the synthesis, see: Hutton & Oakes (1976); Valade et al. (1985).

[‡] Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

V = 1934.21 (5) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.10 \times 0.08 \; \mathrm{mm}$

14014 measured reflections 3895 independent reflections

3457 reflections with $I > 2\sigma(I)$

 $\mu = 1.87 \text{ mm}^-$

T = 120 K

 $R_{\rm int} = 0.056$

Z = 4

Experimental

Crystal data

$[Sn(C_5H_9O_2)_2(C_3S_5)]$
$M_r = 517.26$
Orthorhombic, <i>Pna</i> 2 ₁
a = 12.1224 (2) Å
b = 13.3825 (2) Å
c = 11.9228 (2) Å

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	15 restraints
$wR(F^2) = 0.064$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$
3895 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
211 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline C12-H12a\cdots O1^{i} \\ C7-H7a\cdots O3^{ii} \end{array}$	0.99	2.38	3.338 (6)	164
	0.99	2.46	3.450 (7)	178

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z$.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from FAPEMIG (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2162).

References

- Balasubramanian, R., Chohan, Z. H., Doidge-Harrison, S. M. S. V., Howie, R. A. & Wardell, J. L. (1997). Polyhedron, 16, 4283-4295.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Buchanan, H., Howie, R. A., Khan, A., Spencer, G. M., Wardell, J. L. &
- Aupers, J. H. (1996). J. Chem. Soc. Dalton Trans. pp. 541-548. Harrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182,
- 17 36
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Howie, R. A. & Wardell, J. L. (2001). Acta Cryst. C57, 1041-1043. Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123-133.
- Lanigen, D. & Weinberg, E. L. (1976). Adv. Chem. Ser. 157, 134-142.

Lima, G. M. de, Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Mol. Struct. 921, 244-250. Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M. S., Travis, A. J., Wardell,

J. L. & Wardell, S. M. S. V. (2005). Appl. Organomet. Chem. 19, 363-371.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tian, L. J., Zhang, L. P., Liu, X. C. & Zhou, Z. Y. (2005). Appl. Organomet. Chem. 19, 198–199.

Valade, L., Legros, J. P., Bousseau, M., Garbaukas, M. & Interrante, L. V. (1985). J. Chem. Soc. Dalton Trans. pp. 783–794.

Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, m1635-m1636 [doi:10.1107/S1600536809048971]

Bis(2-ethoxycarbonylethyl- $\kappa^2 C^1$,*O*)(2-thioxo-1,3-dithiole-4,5-dithiolato- $\kappa^2 S^4$, S^5)tin(IV)

Geraldo M. de Lima, Solange M. S. V. Wardell, James L. Wardell and Edward R. T. Tiekink

S1. Comment

Functionally substituted-alkyl-tin compounds, X_3 SnC R_2 CH $_2$ CO $_2$ R' and X_2 Sn(CR_2 CH $_2$ CO $_2$ R') $_2$ (X = halide, R = H or alkyl; R' = alkyl or aryl), are readily available from reactions first reported in the 1970's (Hutton & Oakes, 1976), starting from R_2 CCHCOY (Y = R' or OR'), HX and Sn X_2 (for X_3 SnC R_2 CH $_2$ COY compounds) or HX and tin (for X_2 Sn(CR_2 CH $_2$ COY) $_2$ substrates). Original interest with these compounds was primarily concerned with their industrial potential as precursors of PVC stabilizers (Lanigen & Weinberg, 1976) but also with regard to their coordination chemistry. Although the potential for use in PVC stabilization has not been realised commercially, the interest in the coordination chemistry, generally of compounds containing SnC R_2 CH $_2$ COY moieties, has been maintained over the succeeding decades. Particular interest has been paid to coordination modes of the C R_2 CH $_2$ COY ligands (de Lima *et al.* 2009; Tian *et al.*, 2005; Milne *et al.*, 2005; Harrison *et al.*, 1979). Diester-tin compounds, (MeO $_2$ CCH $_2$ CH $_2$) $_2$ Sn X_2 (X = halide or thiocyanate) (Balasubramanian *et al.*, 1997; Harrison *et al.*, 1979) and (MeO $_2$ CCH $_2$ CH $_2$) $_2$ Sn(dmit) (dmit = 1,3-dithiole-2thione-4,5-dithiolato; Buchanan *et al.*, 1996) have been shown to be molecular species with hexa-coordinate tin centres both in the solid-state and in non-coordinating solutions, as a consequence of the (C,O)-chelating ligands. Compounds (MeCOCH $_2$ CM $_2$)Sn X_2 also contain contain hexa-co-ordinate tin centres (X = Cl or dmit; Howie & Wardell, 2001).

The molecular structure of (I) features a chelating dmit ligand as well as two C-bound CH₂CH₂CO₂Et ligands, each of which coordinates *via* the α carbon atom. The Sn atom exists within a distorted tetrahedral C₂S₂ donor set, Fig. 1. Significant distortions from the ideal geometry arise from the close approach of two carbonyl-O atoms [Sn—O = 2.577 (3) and 2.573 (3) Å] thereby increasing the coordination number to six. The expanded geometry is therefore based on a highly distorted octahedron. The dmit ligand forms nearly equivalent Sn–S bond distances of 2.4805 (11) and 2.4958 (9) Å. In many respects, the molecular structure of (I) resembles that of the previously reported methyl ester analogue (Buchanan *et al.* (1996). The former has crystallographic twofold symmetry which is absent in (I) owing to a misalignment of the ethyl substituents.

In the crystal structure, molecules are connected into a supramolecular chain along the *a* axis *via* C–H···O interactions, with each molecule forming two donor and two acceptor contacts, Table 1 and Fig. 2.

S2. Experimental

Solutions of Cl₂Sn(CH₂CH₂CO₂Et)₂ (0.75 g, 2 mmol) (Hutton & Oakes, 1976) in acetone (20 ml) and [NEt₄]₂[Zn(dmit)₂] (0.70 g, 1 mmol) (Valade *et al.*, 1985) in acetone (20 ml) were mixed and the reaction mixture was maintained at room temperature. After 1 h, the reaction mixture was filtered and the filtrate evaporated to leave a solid residue, which after washing with water, was crystallized from acetone to give the title compound as a red-coloured crystalline solid, m.pt. 394–396 K. ¹H NMR (CDCl₃) δ : 1.25 [t, 3H, J(1*H*-1H) = 7.2 Hz, Me), 1.93 (t, 2H, J(¹H-¹H) = 7.2 Hz, J(¹¹⁹Sn-¹H) = 84.2 Hz), CH₂Sn), 2.96 (t, 2H, J(¹H-¹H) = 7.2 Hz, J(¹¹⁹Sn-¹H) = 137.6 Hz, CH₂CH₂Sn), 4.20 (q, 2H, J(¹H-¹H) = 7.2 Hz, OCH₂)

p.p.m. ¹³C NMR (CDCl₃, 62.9 MHz) δ : 13.9 (CH₃), 22.8 [J(¹¹⁹Sn-¹³C) = 580 Hz, CH₂Sn], 28.5 [J(¹¹⁹Sn-¹³C) = 46 Hz, CH₂CH₂Sn), 63.6 (OCH₂), 129.8 (CC), 181.3 (CO), 210.6 (C S) p.p.m. ¹¹⁹Sn (CD₂Cl₂, 93.3 MHz) δ : 84.2 p.p.m. IR (KBr): 1680 (vCO), 1437 (vCC), 1031 (vCS), 890 (vC-S), 465 (vC-S) cm⁻¹.

S3. Refinement

All H atoms were geometrically placed (C–H = 0.98–0.99 Å) and refined as riding with U_{iso} (H) = 1.2–1.5 U_{eq} (C). Indications for disorder was found in the O2-ethyl group. Multiple sites could not be resolved, however. The O2—C7 and C7—C8 bond distances were refined with the distance restraints of 1.460 ± 0.005 Å and 1.500 ± 0.005 Å, respectively. Further, their anisotropic displacement parameters were constrained to be isotropic with the ISOR command in *SHELXL97* (Sheldrick, 2008). The structure was refined as a racemic twin precluding the determination of the absolute structure.

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Supramolecular chain formation along the *a* axis in (I) mediated by C–H…O contacts (orange dashed lines).

Bis(2-ethoxycarbonylethyl- $\kappa^2 C^1$,O)(2-thioxo-1,3-dithiole- 4,5-dithiolato- $\kappa^2 S^4$,S⁵)tin(IV)

Crystal data

 $[Sn(C_5H_9O_2)_2(C_3S_5)]$ $M_r = 517.26$ Orthorhombic, *Pna2*₁ Hall symbol: P 2c -2n a = 12.1224 (2) Å b = 13.3825 (2) Å c = 11.9228 (2) Å V = 1934.21 (5) Å³ Z = 4

Data collection

Bruker–Nonius 95mm CCD camera on κgoniostat diffractometer Radiation source: Bruker-Nonius FR591 rotating anode Graphite monochromator Detector resolution: 9.091 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.064$ S = 1.043895 reflections 211 parameters F(000) = 1032 $D_x = 1.776 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 16139 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 1.87 \text{ mm}^{-1}$ T = 120 KBlock, orange $0.25 \times 0.10 \times 0.08 \text{ mm}$

 $T_{\min} = 0.025, T_{\max} = 0.052$ 14014 measured reflections
3895 independent reflections
3457 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.056$ $\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 3.0^{\circ}$ $h = -15 \rightarrow 14$ $k = -17 \rightarrow 17$ $l = -13 \rightarrow 15$

15 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.002$
$w = 1/[\sigma^2(F_o^2) + (0.0188P)^2 + 0.7375P]$	$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates of	and isotropic of	equivalent isotrop	oic displacement	parameters ($(Å^2)$	ļ
----------------------------------	------------------	--------------------	------------------	--------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sn	0.529829 (17)	0.337064 (17)	0.45100 (3)	0.02754 (8)
S1	0.53453 (8)	0.51943 (8)	0.41409 (10)	0.0335 (3)
S2	0.73501 (8)	0.33979 (7)	0.46792 (12)	0.0345 (3)
S3	0.88592 (8)	0.51390 (8)	0.48204 (9)	0.0346 (3)
S4	0.72095 (7)	0.66289 (7)	0.43844 (12)	0.0321 (2)
S5	0.94961 (10)	0.72872 (9)	0.49178 (10)	0.0453 (3)
01	0.5826 (3)	0.1584 (2)	0.5112 (3)	0.0379 (7)
O2	0.6277 (3)	0.0814 (3)	0.6703 (3)	0.0573 (10)
O3	0.3343 (2)	0.3912 (2)	0.3931 (2)	0.0309 (6)
O4	0.2446 (2)	0.4120 (2)	0.2305 (2)	0.0360 (7)
C1	0.6756 (3)	0.5390 (3)	0.4401 (4)	0.0295 (9)
C2	0.7527 (3)	0.4689 (3)	0.4608 (5)	0.0307 (8)
C3	0.8572 (3)	0.6406 (3)	0.4716 (4)	0.0313 (10)
C4	0.4687 (4)	0.3126 (4)	0.6175 (4)	0.0356 (11)
H4A	0.4635	0.3773	0.6572	0.043*
H4B	0.3938	0.2834	0.6134	0.043*
C5	0.5442 (4)	0.2423 (4)	0.6830 (4)	0.0417 (11)
H5A	0.6080	0.2807	0.7119	0.050*
H5B	0.5033	0.2154	0.7483	0.050*
C6	0.5855 (4)	0.1571 (3)	0.6132 (4)	0.0412 (11)
C7	0.6762 (6)	0.0013 (4)	0.6013 (5)	0.0691 (19)
H7A	0.7202	0.0313	0.5399	0.083*
H7B	0.6164	-0.0389	0.5671	0.083*
C8	0.7474 (5)	-0.0643 (6)	0.6694 (5)	0.086 (2)
H8A	0.8081	-0.0250	0.7012	0.129*
H8B	0.7776	-0.1175	0.6220	0.129*
H8C	0.7040	-0.0939	0.7302	0.129*
C9	0.4905 (3)	0.2620 (3)	0.2973 (3)	0.0314 (10)
H9A	0.5593	0.2486	0.2552	0.038*
H9B	0.4553	0.1970	0.3145	0.038*
C10	0.4131 (4)	0.3238 (3)	0.2247 (4)	0.0367 (10)
H10A	0.4569	0.3730	0.1817	0.044*

supporting information

H10B	0.3758	0.2792	0.1704	0.044*	
C11	0.3272 (3)	0.3782 (3)	0.2923 (4)	0.0301 (9)	
C12	0.1619 (4)	0.4726 (4)	0.2870 (4)	0.0392 (11)	
H12A	0.1468	0.4441	0.3621	0.047*	
H12B	0.0924	0.4710	0.2434	0.047*	
C13	0.1992 (4)	0.5781 (3)	0.2994 (4)	0.0445 (11)	
H13A	0.2706	0.5796	0.3379	0.067*	
H13B	0.1448	0.6156	0.3433	0.067*	
H13C	0.2068	0.6086	0.2250	0.067*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn	0.02877 (12)	0.02691 (13)	0.02694 (13)	-0.00144 (10)	0.00049 (14)	-0.00137 (15)
S1	0.0284 (5)	0.0272 (5)	0.0451 (7)	0.0013 (4)	-0.0039 (4)	0.0017 (4)
S2	0.0292 (4)	0.0272 (5)	0.0472 (9)	0.0016 (4)	-0.0027 (5)	0.0020 (6)
S3	0.0289 (4)	0.0381 (5)	0.0368 (7)	-0.0026 (4)	-0.0014 (4)	-0.0022 (5)
S4	0.0363 (4)	0.0271 (4)	0.0330 (7)	-0.0037 (4)	0.0001 (5)	-0.0019 (5)
S5	0.0491 (6)	0.0502 (7)	0.0367 (6)	-0.0208 (6)	0.0015 (5)	-0.0058 (6)
01	0.0438 (18)	0.0333 (16)	0.0365 (19)	0.0018 (13)	-0.0047 (14)	-0.0023 (13)
02	0.075 (3)	0.049 (2)	0.048 (2)	0.0012 (18)	-0.0188 (18)	0.0071 (18)
03	0.0315 (13)	0.0359 (16)	0.0254 (16)	0.0003 (13)	-0.0035 (12)	-0.0002 (13)
04	0.0329 (15)	0.0445 (19)	0.0306 (18)	0.0062 (14)	-0.0022 (13)	-0.0018 (15)
C1	0.0323 (17)	0.0266 (17)	0.030 (2)	-0.0050 (15)	-0.003 (2)	0.001 (2)
C2	0.0297 (16)	0.0280 (18)	0.034 (2)	-0.0046 (14)	-0.002(2)	-0.009(2)
C3	0.0352 (18)	0.038 (2)	0.021 (3)	-0.0066 (16)	0.0031 (17)	0.0026 (19)
C4	0.039 (3)	0.035 (3)	0.032 (3)	-0.0048 (19)	0.0015 (18)	-0.004 (2)
C5	0.051 (3)	0.047 (3)	0.027 (2)	-0.010 (2)	-0.001 (2)	0.004 (2)
C6	0.042 (3)	0.039 (3)	0.043 (3)	-0.014 (2)	-0.005 (2)	0.008 (2)
C7	0.092 (5)	0.051 (4)	0.065 (4)	0.018 (3)	-0.031 (4)	-0.016 (3)
C8	0.069 (4)	0.121 (7)	0.069 (5)	0.021 (4)	-0.012 (3)	-0.022 (4)
C9	0.034 (2)	0.031 (2)	0.029 (2)	0.0001 (19)	0.0013 (18)	-0.002 (2)
C10	0.036 (2)	0.046 (3)	0.028 (2)	0.006 (2)	-0.003 (2)	-0.003 (2)
C11	0.031 (2)	0.027 (2)	0.032 (3)	0.0007 (18)	-0.0012 (18)	0.0004 (18)
C12	0.032 (2)	0.048 (3)	0.038 (3)	0.007 (2)	0.0047 (19)	-0.002 (2)
C13	0.044 (3)	0.038 (3)	0.051 (3)	0.005 (2)	0.001 (2)	0.006 (2)

Geometric parameters (Å, °)

Sn—C4	2.144 (5)	C4—H4B	0.9900
Sn—C9	2.144 (4)	C5—C6	1.498 (7)
Sn—S1	2.4805 (11)	C5—H5A	0.9900
Sn—S2	2.4958 (9)	C5—H5B	0.9900
Sn—O3	2.573 (3)	C7—C8	1.475 (4)
Sn—O1	2.577 (3)	С7—Н7А	0.9900
S1—C1	1.758 (4)	С7—Н7В	0.9900
S2—C2	1.743 (4)	C8—H8A	0.9800
S3—C3	1.735 (4)	C8—H8B	0.9800

S3—C2	1.742 (3)	C8—H8C	0.9800
S4—C3	1.724 (4)	C9—C10	1.520 (6)
S4—C1	1.746 (4)	С9—Н9А	0.9900
S5—C3	1.644 (4)	С9—Н9В	0.9900
O1—C6	1.217 (5)	C10—C11	1.505 (6)
O2—C6	1.324 (6)	C10—H10A	0.9900
O2—C7	1.474 (4)	C10—H10B	0.9900
O3—C11	1.217 (5)	C12—C13	1.490 (6)
04—C11	1.323 (5)	C12—H12A	0.9900
04—C12	1.454 (5)	C12—H12B	0.9900
C1-C2	1.348 (5)	C13—H13A	0.9800
C4-C5	1.527 (6)	C13—H13B	0.9800
C4—H4A	0.9900	C13—H13C	0.9800
	0.9900		0.9000
C4—Sn—C9	130.01 (17)	H5A—C5—H5B	107.8
C4—Sn—S1	108.82 (14)	O1—C6—O2	122.4 (5)
C9—Sn—S1	108.33 (12)	O1—C6—C5	122.3 (4)
C4—Sn—S2	105.78 (12)	O2—C6—C5	115.2 (4)
C9—Sn—S2	107.32 (11)	O2—C7—C8	111.0 (5)
S1—Sn—S2	88.68 (3)	O2—C7—H7A	109.4
C4—Sn—O3	88.46 (13)	С8—С7—Н7А	109.4
C9—Sn—O3	72.38 (13)	O2—C7—H7B	109.4
S1—Sn—O3	72.34 (7)	С8—С7—Н7В	109.4
S2—Sn—O3	159.35 (7)	H7A—C7—H7B	108.0
C4—Sn—O1	71.72 (15)	C7—C8—H8A	109.5
C9—Sn—O1	81.87 (14)	C7—C8—H8B	109.5
S1-Sn-O1	163.04 (7)	H8A—C8—H8B	109.5
$s_2 = s_1 = 01$	75 14 (7)	C7 - C8 - H8C	109.5
O3— Sn — $O1$	124.38 (9)	H8A - C8 - H8C	109.5
C1 = S1 = Sn	97 92 (13)	H8B - C8 - H8C	109.5
$C_2 = S_2 = S_n$	97.66 (11)	C10-C9-Sn	10^{-10}
$C_3 = S_3 = C_2^2$	98 14 (18)	C10—C9—H9A	109 3
$C_3 - S_4 - C_1$	97 73 (18)	Sn-C9-H9A	109.3
C6-01-Sn	1074(3)	C10-C9-H9B	109.3
C6-02-C7	107.1(3) 115.0(4)	$S_n - C_9 - H_9B$	109.3
$C_{11} = O_{3} = S_{n}$	106.9(2)	H9A - C9 - H9B	109.9
$C_{11} = 04 = C_{12}$	100.9(2) 1171(3)	C11-C10-C9	112.7(4)
C_{2} C_{1} S_{4}	117.1(3) 116.4(3)	C11 - C10 - H10A	109.1
$C_2 = C_1 = S_1$	110.4(3) 127 1 (3)	C_{0} C_{10} H_{10A}	109.1
$S_{4-C_{1-S_{1}}}$	127.1(3) 116.5(2)	C_{11} C_{10} H_{10B}	109.1
$C_1 = C_2 = S_3$	110.5(2) 115.4(3)	C_{0} C_{10} H_{10B}	109.1
C1 C2 S2	113.4(3) 127.0(3)	$H_{10A} = C_{10} = H_{10B}$	109.1
$S_1 - C_2 - S_2$	127.3(3) 1167(2)	03-011-04	107.0 123.7(A)
S5_C3_S4	120.7(2) 124.2(2)	03-C11-C10	123.7(4) 123.2(4)
S5 C3 S3	127.2(2) 123.6(2)	04 C11 C10	123.2(4) 112 1 (4)
$S_{1} = C_{2} = S_{2}$	123.0(2)	04 - C12 - C12	113.1(4)
с <u>5_С</u> 4_Sn	112.2(2) 111.2(3)	04-012 - 013 04-012 - 013	111.4 (4)
C_{3} C_{4} H_{4}	111.2 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
CJ-C4-114A	107.4	$U13-U12-\Pi12A$	109.3

Sn—C4—H4A	109.4	O4—C12—H12B	109.3
C5-C4-H4B	109.4	C13—C12—H12B	109.3
Sn—C4—H4B	109.4	H12A—C12—H12B	108.0
H4A—C4—H4B	108.0	C12—C13—H13A	109.5
C6—C5—C4	112.6 (4)	C12—C13—H13B	109.5
C6—C5—H5A	109.1	H13A—C13—H13B	109.5
C4—C5—H5A	109.1	C12—C13—H13C	109.5
C6—C5—H5B	109.1	H13A - C13 - H13C	109.5
C4—C5—H5B	109.1	H13B-C13-H13C	109.5
	107.1		109.0
C4—Sn—S1—C1	99.3 (2)	Sn—S2—C2—S3	174.2 (3)
C9—Sn—S1—C1	-114.8 (2)	C1—S4—C3—S5	-176.2(3)
S2—Sn—S1—C1	-6.96 (17)	C1—S4—C3—S3	3.4 (3)
O3—Sn—S1—C1	-178.67 (18)	C2—S3—C3—S5	176.1 (3)
O1—Sn—S1—C1	10.3 (3)	C2—S3—C3—S4	-3.5 (3)
C4—Sn—S2—C2	-102.3(2)	C9—Sn—C4—C5	94.0 (3)
C9—Sn—S2—C2	115.7 (2)	S1—Sn—C4—C5	-129.9(3)
S1—Sn—S2—C2	6.90 (19)	S2—Sn—C4—C5	-35.8 (3)
O3—Sn—S2—C2	29.8 (3)	O3—Sn—C4—C5	159.3 (3)
O1—Sn—S2—C2	-168.0(2)	O1—Sn—C4—C5	32.2 (3)
C4—Sn—O1—C6	-24.6 (3)	Sn-C4-C5-C6	-40.7 (5)
C9—Sn—O1—C6	-161.6 (3)	Sn-O1-C6-O2	-168.4 (4)
S1—Sn—O1—C6	70.1 (4)	Sn-O1-C6-C5	9.8 (5)
S2—Sn—O1—C6	88.0 (3)	C7—O2—C6—O1	3.0 (7)
O3—Sn—O1—C6	-99.5 (3)	C7—O2—C6—C5	-175.4 (5)
C4—Sn—O3—C11	-156.3 (3)	C4-C5-C6-O1	17.7 (6)
C9—Sn—O3—C11	-23.1 (3)	C4C5C6O2	-163.9 (4)
S1—Sn—O3—C11	93.4 (3)	C6—O2—C7—C8	164.1 (5)
S2—Sn—O3—C11	69.3 (4)	C4—Sn—C9—C10	102.9 (4)
O1—Sn—O3—C11	-89.7 (3)	S1—Sn—C9—C10	-33.2 (3)
C3—S4—C1—C2	-2.0 (4)	S2—Sn—C9—C10	-127.7 (3)
C3—S4—C1—S1	178.3 (3)	O3—Sn—C9—C10	30.6 (3)
Sn—S1—C1—C2	6.4 (5)	O1—Sn—C9—C10	160.7 (3)
Sn—S1—C1—S4	-173.9 (2)	Sn-C9-C10-C11	-38.3 (4)
S4—C1—C2—S3	-0.2 (5)	Sn-O3-C11-O4	-169.2 (3)
S1—C1—C2—S3	179.5 (3)	Sn—O3—C11—C10	9.5 (5)
S4—C1—C2—S2	-179.9 (3)	C12-04-C11-O3	3.7 (6)
S1—C1—C2—S2	-0.2 (7)	C12-04-C11-C10	-175.2 (4)
C3—S3—C2—C1	2.3 (4)	C9—C10—C11—O3	16.6 (6)
C3—S3—C2—S2	-178.0 (3)	C9—C10—C11—O4	-164.6 (4)
Sn—S2—C2—C1	-6.1 (5)	C11—O4—C12—C13	81.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12—H12a····O1 ⁱ	0.99	2.38	3.338 (6)	164

			supportin	supporting information		
C7—H7a····O3 ⁱⁱ	0.99	2.46	3.450 (7)	178		
Symmetry codes: (i) $x-1/2$, $-y+1/2$, z ; (ii) $x+1$	/2, -y+1/2, z.					