organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-hydr­­oxy-2-propyl-2H-1,2-benzo­thia­zine-3-carboxyl­ate 1,1-dioxide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 2 November 2009; accepted 3 November 2009; online 7 November 2009)

In the title compound, C13H15NO5S, the thia­zine ring adopts a distorted half-chair conformation. The enolic H atom is involved in an intra­molecular O—H⋯O hydrogen bond, forming a six-membered ring. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds, resulting in zigzag chains lying along the c axis.

Related literature

For the syntheses of related compounds, see: Bihovsky et al. (2004[Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035-1038.]); Braun (1923[Braun, J. (1923). Chem. Ber. 56, 2332-2343.]); Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem. 14, 1171-1175.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For the biological activity of benzothia­zines, see: Turck et al. (1996[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79-84.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]). For related structures, see: Fabiola et al. (1998[Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001-2003.]); Zia-ur-Rehman et al. (2007[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215-o4216.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO5S

  • Mr = 297.32

  • Orthorhombic, P c a 21

  • a = 12.4398 (6) Å

  • b = 8.7538 (5) Å

  • c = 12.7288 (7) Å

  • V = 1386.11 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.39 × 0.36 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.908, Tmax = 0.973

  • 8843 measured reflections

  • 3252 independent reflections

  • 2540 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.03

  • 3252 reflections

  • 184 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1451 Friedel pairs

  • Flack parameter: −0.08 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4 0.82 1.84 2.558 (2) 145
C3—H3⋯O2i 0.93 2.48 3.358 (3) 158
Symmetry code: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Benzothiazine1,1-dioxides are known to possess a versatile range of biological activities and have been synthesized continuously since the very first synthesis in 1923 (Braun, 1923). Among these, Piroxicam (Lombardino et al., 1971; Zia-ur-Rehman et al., 2005), and Meloxicam (Turck et al., 1996) are familiar for their analgesic and anti-inflammatory activities and are being used world wide as non-steroidal anti-inflammatory drugs (NSAIDs). Few of its derivatives are also known as potent calpain I inhibitors (Bihovsky et al., 2004), while benzothiaine-3-yl-quinazolin-4-ones showed marked activity against Bacillus subtilis (Zia-ur-Rehman et al., 2006). As part of a research program synthesizing various bioactive benzothiazines (Zia-ur-Rehman et al., 2005, 2006, 2009), we herein report the crystal structure of the title compound, (I).

In the molecule of the title compound (Fig. 1), the thiazine ring exhibits a distorted half-chair conformation with S1/C1/C6/C7 atoms lying in a plane and N1 showing significant departure from the plane due to its pyramidal geometry projecting the propyl group approximately perpendicular to the ring. Like other 1,2-benzothiazine 1,1-dioxide derivatives (Fabiola et al., 1998; Zia-ur-Rehman et al., 2007), the enolic hydrogen on O3 is involved in intramolecular hydrogen bonding (Table1). Also, C7—C8 bond length [1.346 (3) Å] (very close to normal C—C bond 1.36 Å) indicates a partial double-bond character indicating the dominance of enolic form in the molecule. The C1—S1 bond distance [1.759 (3) Å] is as expected for typical C(sp2)—S bond (1.751 Å). Each molecule is linked to neighbouring molecules via weaker C—H···O=S interactions giving rise to zigzag chains along the c axis (Fig. 2).

Related literature top

For the syntheses of related compounds, see: Bihovsky et al. (2004); Braun (1923); Lombardino et al. (1971); Zia-ur-Rehman et al. (2005, 2009). For the biological activity of benzothiazines, see: Turck et al. (1996); Zia-ur-Rehman et al. (2006). For related structures, see: Fabiola et al. (1998); Zia-ur-Rehman et al. (2007).

Experimental top

Propyl iodide (5.10 g, 30.0 mmol) was added drop wise to the mixture of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (3.83 g, 15.0 mmol), anhydrous potassium carbonate (1.68 g, 30.0 mmol) and dimethylformamide (20.0 ml) in a round bottom flask. Contents were stirred at room temperature for 7 h under nitrogen atmosphere and poured over ice cooled water (300 ml) resulting in an immediate formation of a white solid, which was filtered and washed with cold water. Crystallization from methanol yielded pure compound.

Refinement top

All hydrogen atoms were identified in the difference map and subsequently fixed in ideal positions and treated as riding on their parent atoms. In the case of the methyl and hydroxyl H atoms the torsion angles were freely refined. The following distances were used: C—H = 0.98 Å for methyl, C—H = 0.95 Å for aromatic and O—H = 0.84 Å for hydroxyl. Uiso(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing showing C—H···O hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
Methyl 4-hydroxy-2-propyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide top
Crystal data top
C13H15NO5SF(000) = 624
Mr = 297.32Dx = 1.425 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2980 reflections
a = 12.4398 (6) Åθ = 2.3–25.3°
b = 8.7538 (5) ŵ = 0.25 mm1
c = 12.7288 (7) ÅT = 296 K
V = 1386.11 (13) Å3Rods, yellow
Z = 40.39 × 0.36 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3252 independent reflections
Radiation source: fine-focus sealed tube2540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1610
Tmin = 0.908, Tmax = 0.973k = 1111
8843 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0496P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3252 reflectionsΔρmax = 0.16 e Å3
184 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1451 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (8)
Crystal data top
C13H15NO5SV = 1386.11 (13) Å3
Mr = 297.32Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 12.4398 (6) ŵ = 0.25 mm1
b = 8.7538 (5) ÅT = 296 K
c = 12.7288 (7) Å0.39 × 0.36 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3252 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2540 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.973Rint = 0.028
8843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.16 e Å3
S = 1.03Δρmin = 0.22 e Å3
3252 reflectionsAbsolute structure: Flack (1983), 1451 Friedel pairs
184 parametersAbsolute structure parameter: 0.08 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58950 (17)0.7963 (3)0.8319 (2)0.0442 (5)
C20.66903 (18)0.8114 (3)0.7577 (2)0.0565 (6)
H20.73910.78160.77260.068*
C30.6434 (2)0.8714 (3)0.6609 (3)0.0703 (8)
H30.69670.88290.61030.084*
C40.5396 (2)0.9145 (3)0.6385 (2)0.0622 (7)
H40.52300.95360.57250.075*
C50.45981 (19)0.9001 (3)0.71319 (19)0.0509 (6)
H50.39000.93080.69760.061*
C60.48305 (15)0.8403 (3)0.81103 (17)0.0407 (5)
C70.39979 (15)0.8187 (3)0.89165 (18)0.0398 (5)
C80.40966 (15)0.7206 (2)0.97246 (19)0.0389 (5)
C90.32273 (17)0.7043 (3)1.04807 (18)0.0443 (5)
C100.2568 (3)0.5866 (3)1.2006 (3)0.0755 (8)
H10A0.19550.54551.16450.113*
H10B0.23780.68251.23220.113*
H10C0.27940.51651.25420.113*
C110.50112 (17)0.4660 (3)0.9658 (2)0.0493 (5)
H11A0.44650.42141.01070.059*
H11B0.56950.42040.98480.059*
C120.4761 (2)0.4257 (3)0.8530 (2)0.0589 (7)
H12A0.52790.47480.80720.071*
H12B0.40520.46390.83500.071*
C130.4794 (3)0.2548 (3)0.8355 (3)0.0812 (10)
H13A0.42970.20570.88230.122*
H13B0.55070.21780.84900.122*
H13C0.46000.23250.76410.122*
N10.50637 (13)0.6325 (2)0.98684 (13)0.0423 (5)
O10.70303 (11)0.6188 (2)0.95391 (16)0.0633 (5)
O20.62415 (13)0.8534 (2)1.02728 (17)0.0676 (6)
O30.31275 (12)0.90699 (18)0.87688 (13)0.0532 (4)
H3A0.26710.88610.92110.080*
O40.23788 (13)0.7728 (2)1.03972 (15)0.0586 (5)
O50.34308 (13)0.60963 (19)1.12699 (13)0.0547 (4)
S10.61649 (4)0.72551 (7)0.95848 (6)0.04848 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (10)0.0384 (12)0.0580 (13)0.0019 (9)0.0015 (10)0.0081 (10)
C20.0407 (13)0.0523 (15)0.0765 (17)0.0002 (11)0.0107 (12)0.0006 (13)
C30.0666 (18)0.0632 (18)0.081 (2)0.0040 (15)0.0342 (15)0.0044 (15)
C40.0709 (17)0.0561 (17)0.0595 (16)0.0069 (13)0.0155 (14)0.0104 (13)
C50.0502 (13)0.0437 (14)0.0587 (15)0.0032 (10)0.0017 (11)0.0047 (11)
C60.0369 (10)0.0354 (12)0.0499 (13)0.0005 (9)0.0016 (9)0.0056 (10)
C70.0322 (10)0.0402 (12)0.0471 (12)0.0021 (8)0.0027 (9)0.0072 (9)
C80.0315 (8)0.0412 (11)0.0439 (14)0.0042 (8)0.0029 (9)0.0057 (10)
C90.0403 (12)0.0447 (12)0.0480 (12)0.0016 (10)0.0004 (10)0.0040 (11)
C100.0678 (16)0.095 (2)0.0642 (17)0.0176 (16)0.0203 (13)0.0219 (18)
C110.0443 (10)0.0444 (12)0.0592 (13)0.0112 (9)0.0031 (11)0.0016 (13)
C120.0590 (14)0.0499 (16)0.0677 (17)0.0024 (11)0.0011 (13)0.0091 (12)
C130.077 (2)0.059 (2)0.107 (3)0.0003 (14)0.0020 (18)0.0210 (19)
N10.0350 (9)0.0465 (11)0.0455 (12)0.0077 (7)0.0061 (7)0.0044 (8)
O10.0354 (7)0.0806 (12)0.0740 (11)0.0161 (7)0.0059 (9)0.0045 (11)
O20.0468 (10)0.0802 (14)0.0760 (12)0.0004 (8)0.0149 (8)0.0329 (11)
O30.0378 (8)0.0548 (10)0.0669 (11)0.0137 (7)0.0065 (7)0.0114 (8)
O40.0413 (9)0.0678 (11)0.0669 (11)0.0144 (8)0.0100 (8)0.0109 (9)
O50.0484 (9)0.0677 (11)0.0480 (9)0.0105 (8)0.0071 (7)0.0092 (8)
S10.0309 (2)0.0583 (3)0.0562 (3)0.0046 (2)0.0086 (3)0.0146 (3)
Geometric parameters (Å, º) top
C1—C21.374 (3)C10—O51.439 (3)
C1—C61.404 (3)C10—H10A0.9600
C1—S11.759 (3)C10—H10B0.9600
C2—C31.376 (4)C10—H10C0.9600
C2—H20.9300C11—N11.483 (3)
C3—C41.375 (4)C11—C121.511 (4)
C3—H30.9300C11—H11A0.9700
C4—C51.380 (3)C11—H11B0.9700
C4—H40.9300C12—C131.513 (4)
C5—C61.382 (3)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—C71.470 (3)C13—H13A0.9600
C7—O31.344 (2)C13—H13B0.9600
C7—C81.346 (3)C13—H13C0.9600
C8—N11.441 (3)N1—S11.6339 (19)
C8—C91.455 (3)O1—S11.4268 (15)
C9—O41.219 (3)O2—S11.425 (2)
C9—O51.327 (3)O3—H3A0.8200
C2—C1—C6121.5 (2)H10A—C10—H10C109.5
C2—C1—S1121.76 (19)H10B—C10—H10C109.5
C6—C1—S1116.72 (17)N1—C11—C12114.2 (2)
C1—C2—C3119.0 (2)N1—C11—H11A108.7
C1—C2—H2120.5C12—C11—H11A108.7
C3—C2—H2120.5N1—C11—H11B108.7
C4—C3—C2120.5 (2)C12—C11—H11B108.7
C4—C3—H3119.7H11A—C11—H11B107.6
C2—C3—H3119.7C11—C12—C13111.4 (2)
C3—C4—C5120.5 (3)C11—C12—H12A109.3
C3—C4—H4119.8C13—C12—H12A109.3
C5—C4—H4119.8C11—C12—H12B109.3
C4—C5—C6120.4 (2)C13—C12—H12B109.3
C4—C5—H5119.8H12A—C12—H12B108.0
C6—C5—H5119.8C12—C13—H13A109.5
C5—C6—C1118.1 (2)C12—C13—H13B109.5
C5—C6—C7122.04 (19)H13A—C13—H13B109.5
C1—C6—C7119.8 (2)C12—C13—H13C109.5
O3—C7—C8123.2 (2)H13A—C13—H13C109.5
O3—C7—C6113.3 (2)H13B—C13—H13C109.5
C8—C7—C6123.46 (18)C8—N1—C11117.79 (16)
C7—C8—N1120.99 (19)C8—N1—S1113.92 (15)
C7—C8—C9120.03 (18)C11—N1—S1119.13 (14)
N1—C8—C9118.98 (19)C7—O3—H3A109.5
O4—C9—O5122.6 (2)C9—O5—C10115.99 (19)
O4—C9—C8122.6 (2)O2—S1—O1119.30 (11)
O5—C9—C8114.85 (18)O2—S1—N1108.17 (11)
O5—C10—H10A109.5O1—S1—N1108.37 (10)
O5—C10—H10B109.5O2—S1—C1107.40 (13)
H10A—C10—H10B109.5O1—S1—C1109.72 (11)
O5—C10—H10C109.5N1—S1—C1102.59 (9)
C6—C1—C2—C30.1 (4)N1—C8—C9—O51.8 (3)
S1—C1—C2—C3178.3 (2)N1—C11—C12—C13176.1 (2)
C1—C2—C3—C40.5 (4)C7—C8—N1—C11108.9 (2)
C2—C3—C4—C50.9 (4)C9—C8—N1—C1172.3 (3)
C3—C4—C5—C60.9 (4)C7—C8—N1—S137.8 (3)
C4—C5—C6—C10.5 (3)C9—C8—N1—S1141.04 (17)
C4—C5—C6—C7178.1 (2)C12—C11—N1—C863.6 (3)
C2—C1—C6—C50.1 (3)C12—C11—N1—S181.3 (2)
S1—C1—C6—C5178.34 (18)O4—C9—O5—C102.7 (3)
C2—C1—C6—C7178.5 (2)C8—C9—O5—C10177.5 (2)
S1—C1—C6—C73.0 (3)C8—N1—S1—O261.60 (18)
C5—C6—C7—O321.8 (3)C11—N1—S1—O2152.19 (18)
C1—C6—C7—O3159.7 (2)C8—N1—S1—O1167.73 (15)
C5—C6—C7—C8158.4 (2)C11—N1—S1—O121.5 (2)
C1—C6—C7—C820.2 (3)C8—N1—S1—C151.72 (16)
O3—C7—C8—N1177.71 (19)C11—N1—S1—C194.49 (18)
C6—C7—C8—N12.1 (3)C2—C1—S1—O2100.0 (2)
O3—C7—C8—C91.1 (3)C6—C1—S1—O278.46 (19)
C6—C7—C8—C9179.1 (2)C2—C1—S1—O131.1 (2)
C7—C8—C9—O42.6 (3)C6—C1—S1—O1150.46 (17)
N1—C8—C9—O4178.5 (2)C2—C1—S1—N1146.1 (2)
C7—C8—C9—O5177.1 (2)C6—C1—S1—N135.43 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.821.842.558 (2)145
C3—H3···O2i0.932.483.358 (3)158
Symmetry code: (i) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC13H15NO5S
Mr297.32
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)12.4398 (6), 8.7538 (5), 12.7288 (7)
V3)1386.11 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.39 × 0.36 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.908, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
8843, 3252, 2540
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.03
No. of reflections3252
No. of parameters184
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.22
Absolute structureFlack (1983), 1451 Friedel pairs
Absolute structure parameter0.08 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.821.842.558 (2)145
C3—H3···O2i0.932.483.358 (3)158
Symmetry code: (i) x+3/2, y, z1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan and PCSIR Laboratories Complex for the provision of the diffractometer and chemicals, respectively.

References

First citationBihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035–1038.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBraun, J. (1923). Chem. Ber. 56, 2332–2343.  CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem. 14, 1171–1175.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79–84.  PubMed Web of Science Google Scholar
First citationZia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds