organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl-N-(prop-2-en-1-yl)benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 10 November 2009; accepted 12 November 2009; online 18 November 2009)

The title compound, C15H21NO2S, synthesized by N-alkyl­ation of cyclo­hexyl­amine benzene­sulfonamide with allyl iodide, is of inter­est as a precursor to biologically active sulfur-containing heterocyclic compounds. The cyclo­hexane ring is in a chair form and its mean plane makes a dihedral angle of 53.84 (12)° with the phenyl ring.

Related literature

For the synthesis of related mol­ecules, see: Arshad et al. (2009[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596.]); Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For biological applications of sulfonamides, see: Connor (1998[Connor, E. E. (1998). Prim. Care Update Ob. Gyn. 5, 32-35.]); Berredjem et al. (2000[Berredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249-264.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]); Xiao & Timberlake (2000[Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773-777.]). For a related structure, see: Khan et al. (2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21NO2S

  • Mr = 279.39

  • Monoclinic, P 21 /n

  • a = 8.4911 (5) Å

  • b = 11.4176 (6) Å

  • c = 15.6274 (10) Å

  • β = 94.188 (3)°

  • V = 1511.00 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.38 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.924, Tmax = 0.975

  • 16559 measured reflections

  • 3746 independent reflections

  • 2179 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.144

  • S = 1.02

  • 3746 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides are familiar in the literature for their anti-malarial, anti-convulsant and anti-hypertensive (Connor, 1998; Xiao & Timberlake, 2000; Berredjem et al., 2000; Lee & Lee, 2002) activities. As a part of our ongoing research program regarding the synthesis of sulfur containing heterocyclic compounds (Arshad et al., 2009; Zia-ur-Rehman et al., 2009; Khan et al., 2009), we herein report the crystal structure of the title compound (Fig. 1).

In the title molecule, bond lengths and bond angles are within the normal ranges (Allen et al., 1987). In the crystal structure, the phenyl ring is essentially planar while the cyclohexane ring is in a chair form. No significant hydrogen bond interactions are observed in the title molecule. The dihedral angle between the phenyl and cyclohexane rings is 53.84 (12)°.

Related literature top

For the synthesis of related molecules, see: Arshad et al. (2009); Zia-ur-Rehman et al. (2009). For biological applications of sulfonamides, see: Connor (1998); Berredjem et al. (2000); Lee & Lee (2002); Xiao & Timberlake (2000). For a related structure, see: Khan et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of N-cyclohexylbenzene sulfonamide (1.0 g, 0.43 mmol), sodium hydride (0.21 g, 0.88 mmol) and N, N-dimethylformamide (10.0 ml) was stirred at room temperature for half an hour followed by addition of allyl iodide (0.144 g, 0.86 mmol). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from methanol.

Refinement top

All hydrogen atoms were identified in the difference map. However, they were fixed in ideal positions and treated as riding on their parent atoms. The following distances were used: Cmethyl—H = 0.98 Å and Caromatic—H = 0.95 Å. Uiso(H) was set to 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 50% probability level.
N-Cyclohexyl-N-(prop-2-en-1-yl)benzenesulfonamide top
Crystal data top
C15H21NO2SF(000) = 600
Mr = 279.39Dx = 1.228 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3312 reflections
a = 8.4911 (5) Åθ = 2.2–21.3°
b = 11.4176 (6) ŵ = 0.21 mm1
c = 15.6274 (10) ÅT = 296 K
β = 94.188 (3)°Needles, light yellow
V = 1511.00 (15) Å30.38 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3746 independent reflections
Radiation source: fine-focus sealed tube2179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.924, Tmax = 0.975k = 1515
16559 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.3938P]
where P = (Fo2 + 2Fc2)/3
3746 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H21NO2SV = 1511.00 (15) Å3
Mr = 279.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4911 (5) ŵ = 0.21 mm1
b = 11.4176 (6) ÅT = 296 K
c = 15.6274 (10) Å0.38 × 0.18 × 0.12 mm
β = 94.188 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3746 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2179 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.975Rint = 0.047
16559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
3746 reflectionsΔρmin = 0.34 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27668 (7)0.31209 (5)0.25071 (4)0.0519 (2)
O10.3713 (2)0.21435 (17)0.27943 (11)0.0744 (6)
O20.3425 (2)0.42730 (16)0.25495 (14)0.0776 (6)
N10.1228 (2)0.31154 (15)0.30554 (12)0.0460 (5)
C10.2123 (2)0.28696 (18)0.14300 (14)0.0438 (5)
C20.1843 (3)0.3808 (2)0.08789 (19)0.0714 (8)
H20.20240.45700.10730.086*
C30.1297 (4)0.3605 (3)0.0047 (2)0.0942 (11)
H30.10970.42330.03240.113*
C40.1044 (4)0.2497 (4)0.02421 (19)0.0881 (10)
H40.06920.23700.08120.106*
C50.1303 (3)0.1558 (3)0.03010 (18)0.0744 (8)
H50.11100.08010.01010.089*
C60.1849 (3)0.1740 (2)0.11428 (16)0.0534 (6)
H60.20320.11080.15130.064*
C70.0098 (2)0.41024 (18)0.29605 (14)0.0416 (5)
H70.06350.47400.26790.050*
C80.0307 (3)0.45575 (19)0.38291 (14)0.0485 (6)
H8A0.06540.47760.41640.058*
H8B0.08190.39430.41360.058*
C90.1402 (3)0.5618 (2)0.37271 (16)0.0584 (7)
H9A0.17020.58610.42870.070*
H9B0.08410.62630.34820.070*
C100.2872 (3)0.5350 (2)0.31574 (16)0.0573 (6)
H10A0.34970.47690.34330.069*
H10B0.35030.60550.30780.069*
C110.2460 (3)0.4895 (2)0.22941 (16)0.0621 (7)
H11A0.19280.55040.19930.074*
H11B0.34210.46890.19530.074*
C120.1393 (3)0.3822 (2)0.23980 (15)0.0539 (6)
H12A0.19590.31900.26550.065*
H12B0.11090.35630.18380.065*
C130.0737 (3)0.20179 (19)0.34549 (16)0.0566 (6)
H13A0.10460.13580.31140.068*
H13B0.04040.20070.34640.068*
C140.1475 (4)0.1896 (2)0.4359 (2)0.0795 (9)
H140.25460.20690.44390.095*
C150.0842 (6)0.1601 (3)0.4985 (3)0.1242 (14)
H15A0.02280.14170.49430.149*
H15B0.14200.15570.55130.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0389 (3)0.0632 (4)0.0529 (4)0.0041 (3)0.0012 (3)0.0167 (3)
O10.0604 (11)0.1025 (14)0.0580 (12)0.0354 (10)0.0124 (9)0.0179 (10)
O20.0527 (10)0.0808 (13)0.1011 (15)0.0240 (9)0.0184 (10)0.0401 (11)
N10.0466 (11)0.0490 (10)0.0423 (11)0.0079 (8)0.0035 (9)0.0034 (8)
C10.0376 (11)0.0515 (12)0.0429 (13)0.0029 (9)0.0074 (10)0.0026 (10)
C20.090 (2)0.0625 (16)0.0642 (19)0.0097 (14)0.0200 (16)0.0112 (14)
C30.114 (3)0.112 (3)0.058 (2)0.044 (2)0.0161 (19)0.026 (2)
C40.072 (2)0.149 (3)0.0426 (17)0.027 (2)0.0041 (14)0.005 (2)
C50.0732 (19)0.093 (2)0.0562 (18)0.0054 (16)0.0002 (15)0.0247 (16)
C60.0576 (15)0.0552 (14)0.0473 (14)0.0014 (11)0.0037 (12)0.0037 (11)
C70.0413 (12)0.0455 (11)0.0380 (12)0.0012 (9)0.0026 (10)0.0027 (9)
C80.0505 (13)0.0538 (13)0.0409 (13)0.0021 (10)0.0010 (11)0.0096 (10)
C90.0706 (17)0.0520 (13)0.0534 (15)0.0092 (12)0.0098 (13)0.0102 (11)
C100.0553 (15)0.0609 (14)0.0561 (16)0.0170 (12)0.0065 (12)0.0024 (12)
C110.0565 (15)0.0786 (17)0.0496 (16)0.0154 (13)0.0053 (12)0.0003 (13)
C120.0515 (14)0.0666 (15)0.0424 (14)0.0077 (11)0.0056 (11)0.0133 (11)
C130.0663 (16)0.0484 (13)0.0549 (16)0.0073 (11)0.0034 (13)0.0028 (11)
C140.097 (2)0.0728 (18)0.070 (2)0.0197 (16)0.0169 (18)0.0238 (16)
C150.164 (4)0.111 (3)0.097 (3)0.014 (3)0.009 (3)0.025 (2)
Geometric parameters (Å, º) top
S1—O11.4283 (18)C8—H8A0.9700
S1—O21.4289 (17)C8—H8B0.9700
S1—N11.6136 (19)C9—C101.511 (4)
S1—C11.755 (2)C9—H9A0.9700
N1—C131.474 (3)C9—H9B0.9700
N1—C71.481 (2)C10—C111.510 (3)
C1—C61.380 (3)C10—H10A0.9700
C1—C21.385 (3)C10—H10B0.9700
C2—C31.368 (4)C11—C121.525 (3)
C2—H20.9300C11—H11A0.9700
C3—C41.355 (5)C11—H11B0.9700
C3—H30.9300C12—H12A0.9700
C4—C51.375 (4)C12—H12B0.9700
C4—H40.9300C13—C141.509 (4)
C5—C61.378 (4)C13—H13A0.9700
C5—H50.9300C13—H13B0.9700
C6—H60.9300C14—C151.198 (4)
C7—C81.516 (3)C14—H140.9300
C7—C121.522 (3)C15—H15A0.9300
C7—H70.9800C15—H15B0.9300
C8—C91.528 (3)
O1—S1—O2119.70 (12)H8A—C8—H8B108.1
O1—S1—N1106.79 (11)C10—C9—C8111.75 (18)
O2—S1—N1107.95 (10)C10—C9—H9A109.3
O1—S1—C1107.60 (10)C8—C9—H9A109.3
O2—S1—C1106.76 (12)C10—C9—H9B109.3
N1—S1—C1107.52 (10)C8—C9—H9B109.3
C13—N1—C7119.21 (17)H9A—C9—H9B107.9
C13—N1—S1119.58 (14)C11—C10—C9111.2 (2)
C7—N1—S1119.19 (14)C11—C10—H10A109.4
C6—C1—C2120.3 (2)C9—C10—H10A109.4
C6—C1—S1119.87 (17)C11—C10—H10B109.4
C2—C1—S1119.82 (19)C9—C10—H10B109.4
C3—C2—C1119.4 (3)H10A—C10—H10B108.0
C3—C2—H2120.3C10—C11—C12110.8 (2)
C1—C2—H2120.3C10—C11—H11A109.5
C4—C3—C2120.7 (3)C12—C11—H11A109.5
C4—C3—H3119.7C10—C11—H11B109.5
C2—C3—H3119.7C12—C11—H11B109.5
C3—C4—C5120.5 (3)H11A—C11—H11B108.1
C3—C4—H4119.8C7—C12—C11110.82 (19)
C5—C4—H4119.8C7—C12—H12A109.5
C4—C5—C6120.0 (3)C11—C12—H12A109.5
C4—C5—H5120.0C7—C12—H12B109.5
C6—C5—H5120.0C11—C12—H12B109.5
C5—C6—C1119.2 (2)H12A—C12—H12B108.1
C5—C6—H6120.4N1—C13—C14111.3 (2)
C1—C6—H6120.4N1—C13—H13A109.4
N1—C7—C8111.04 (17)C14—C13—H13A109.4
N1—C7—C12113.81 (17)N1—C13—H13B109.4
C8—C7—C12110.80 (18)C14—C13—H13B109.4
N1—C7—H7106.9H13A—C13—H13B108.0
C8—C7—H7106.9C15—C14—C13127.5 (4)
C12—C7—H7106.9C15—C14—H14116.2
C7—C8—C9110.76 (19)C13—C14—H14116.2
C7—C8—H8A109.5C14—C15—H15A120.0
C9—C8—H8A109.5C14—C15—H15B120.0
C7—C8—H8B109.5H15A—C15—H15B120.0
C9—C8—H8B109.5
O1—S1—N1—C1322.4 (2)C2—C1—C6—C50.3 (4)
O2—S1—N1—C13152.36 (18)S1—C1—C6—C5178.25 (19)
C1—S1—N1—C1392.80 (18)C13—N1—C7—C864.3 (2)
O1—S1—N1—C7173.87 (15)S1—N1—C7—C8131.93 (17)
O2—S1—N1—C743.96 (19)C13—N1—C7—C1261.5 (3)
C1—S1—N1—C770.88 (17)S1—N1—C7—C12102.2 (2)
O1—S1—C1—C632.0 (2)N1—C7—C8—C9176.87 (18)
O2—S1—C1—C6161.62 (18)C12—C7—C8—C955.6 (2)
N1—S1—C1—C682.75 (19)C7—C8—C9—C1055.1 (3)
O1—S1—C1—C2150.1 (2)C8—C9—C10—C1155.4 (3)
O2—S1—C1—C220.4 (2)C9—C10—C11—C1256.1 (3)
N1—S1—C1—C295.2 (2)N1—C7—C12—C11177.19 (19)
C6—C1—C2—C30.2 (4)C8—C7—C12—C1156.8 (3)
S1—C1—C2—C3178.1 (2)C10—C11—C12—C756.9 (3)
C1—C2—C3—C40.6 (5)C7—N1—C13—C14104.9 (2)
C2—C3—C4—C51.3 (5)S1—N1—C13—C1491.5 (2)
C3—C4—C5—C61.1 (5)N1—C13—C14—C15134.8 (4)
C4—C5—C6—C10.3 (4)

Experimental details

Crystal data
Chemical formulaC15H21NO2S
Mr279.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.4911 (5), 11.4176 (6), 15.6274 (10)
β (°) 94.188 (3)
V3)1511.00 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.38 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.924, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
16559, 3746, 2179
Rint0.047
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.144, 1.02
No. of reflections3746
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249–264.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConnor, E. E. (1998). Prim. Care Update Ob. Gyn. 5, 32–35.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773–777.  CrossRef CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds