

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Isopropyl-5-methylcyclohexyl 5acetoxy-1,3-oxathiolane-2-carboxylate

Grzegorz Dutkiewicz,^a C. S. Chidan Kumar,^b H. S. Yathirajan,^b A. N. Mayekar^c and Maciej Kubicki^a*

^aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cSequent Scientific Limited, New Mangalore 575 011, India

Correspondence e-mail: mkubicki@amu.edu.pl

Received 4 November 2009; accepted 4 November 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.053; data-to-parameter ratio = 13.1.

In the title compound, $C_{16}H_{26}O_5S$, the oxathiolane ring adopts an envelope conformation, with the S atom 0.793 (3) Å out of the mean plane of the remaining four atoms. The cyclohexane ring of the menthol fragment adopts an almost ideal chair conformation, with all substituents in the equatorial positions. In the crystal, relatively strong, short and linear $C-H\cdots O$ hydrogen bonds link the molecules into the chains along [100] direction. The chains are packed into the crystal structure by means of weak dispersive interactions. Intermolecular C- $H\cdots S$ interactions are also observed.

Related literature

The title compound is a drug intermediate of lamivudine, a reverse transcriptase inhibitor used in the treatment of HIV infections. For the structures of lamivudine and its hydrate have been studied, see: Harris *et al.* (1997). For the identification of lamivudine conformers by Raman scattering measurements and quantum chemical calculations, see: Pereira *et al.* (2007). For asymmetry parameters, see: Duax & Norton (1975). For a description of the Cambridge Structural Database, see: Allen (2002).

V = 1735.8 (4) Å³

Mo $K\alpha$ radiation

 $0.3 \times 0.3 \times 0.15 \text{ mm}$

Diffraction, 2009) $T_{\min} = 0.719, T_{\max} = 1.000$

11503 measured reflections 3632 independent reflections

3175 reflections with $I > 2\sigma(I)$

Absolute structure: Flack (1983),

 $\mu = 0.21 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.025$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

1435 Friedel pairs

Flack parameter: -0.04(5)

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{26}O_5S\\ M_r = 330.43\\ Orthorhombic, P2_12_12_1\\ a = 5.329 \ (1) \ \text{\AA}\\ b = 13.867 \ (1) \ \text{\AA}\\ c = 23.490 \ (2) \ \text{\AA} \end{array}$

Data collection

Oxford Diffraction Xcalibur
Sapphire2 large Be window
diffractometer
Absorption correction: multi-scan
(CrysAlis Pro; Oxford

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.028 \\ wR(F^2) &= 0.053 \\ S &= 1.03 \\ 3632 \text{ reflections} \\ 277 \text{ parameters} \\ \text{H atoms treated by a mixture of} \\ \text{independent and constrained} \\ \text{refinement} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

, , ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13-H13···O12 ⁱ C15-H15 A ···S14 ⁱⁱ C20-H20 B ···O19 ⁱ	0.989 (15) 0.961 (16) 0.961 (18)	2.261 (15) 3.033 (15) 2.524 (18)	3.1563 (18) 3.7794 (15) 3.464 (2)	150.0 (12) 135.6 (11) 166.0 (14)
		1 2		

Symmetry codes: (i) x + 1, y, z; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: *CrysAlis Pro* (Oxford Diffraction, 2009); cell refinement: *CrysAlis Pro*; data reduction: *CrysAlis Pro*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Stereochemical Workstation Operation Manual* (Siemens, 1989); software used to prepare material for publication: *SHELXL97*.

CSC thanks the University of Mysore for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2112).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harris, R. K., Yeung, R. R., Lamont, R. B., Lancaster, R. W., Lynn, S. M. & Staniforth, S. E. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 2653–2659.
- Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.
- Pereira, B. G., Vianna-Soares, C. D., Righi, A., Pinheiro, M. V. B., Flores, M. Z. S., Bezerra, E. M., Freire, V. N., Lemos, V., Caetano, E. W. S. & Cavada, B. S. (2007). J. Pharm. Biomed. Anal. 43, 1885–1889.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, o3169 [doi:10.1107/S1600536809046492]

2-Isopropyl-5-methylcyclohexyl 5-acetoxy-1,3-oxathiolane-2-carboxylate

Grzegorz Dutkiewicz, C. S. Chidan Kumar, H. S. Yathirajan, A. N. Mayekar and Maciej Kubicki

S1. Comment

5-Methyl-2-(propan-2-yl)cyclohexyl 5-(acetyloxy)-1,3-oxathiolane-2-carboxylate (I, Scheme 1) is a drug intermediate of lamivudine which is a reverse transcriptase inhibitor used in the treatment of HIV infection alone or in combination with other class of Anti HIV drugs. The crystal stractures of Lamivudine and its hydrate have been studied (Harris *et al.*, 1997). The identification of lamivudine conformers by Raman scattering measurements and quantum chemical calculations is reported (Pereira *et al.*, 2007).

The conformation of the oxathiolane ring is close to an envelope (Fig. 1), with four atoms C13, C15, C16 and O17 almost coplanar (maximum deviation from the least-squares plane of 0.0469 (11) Å) while the fifth atom (S14) is significantly, by 0.793 (3) Å out of this plane. Also the asymmetry parameter (Duax & Norton, 1975), which describes the deviation from the ideal symmetry (in this case C_s), has relatively low value of 6.0°. Similar conformation was observed in the majority of the structures with not fused oxathiolane rings found in the Cambridge Structural Database (Allen, 2002), however different atoms occupy the out-of-plane position. The acetyloxy substituent occupies the *quasi*-axial position with respect to the oxathiolane ring (C13—O17—C16—O18 torsion angle is -109.18 (13) °, S14—C15—C16—O18 84.13 (12) °), the position of carboxylate group is also close to the axial one (C16—O17—C13—C12 - 97.66 (14) °, C15—S14—C13—C12 84.89 (10) °). The cyclohexyl ring is close to the typical chair conformation (maximum and minimum values of the asymmetry parameters are 0.74° for ΔC_s^{5} , and 3.96° ΔC_2^{1-6}), all substituents: methyl, isopropyl and carboxylate are in equatorial positions.

In the crystal structure relatively strong (short and directional) C13—H13···O12ⁱ hydrogen bonds join the molecules into the infinite chains along [100]. These chain in turn are organized into the crystal structure by weak van der Waals - type interactions (Table 1, Fig. 2).

S2. Experimental

To a mixture of *L*-menthyl-5-hydroxy-1,3-oxathiolane-2-carboxylate (1.5 g, 5.2 m mol) in pyridine (30 ml), acetic anhydride (6.4 ml) was added slowly at 273 K (Fig. 4). The mixture was allowed to attain room temperature and stirred over night, then quenched to ice cold water and extracted with ethyl acetate. The organic layer was concentrated under vacuum to obtain the product. X-ray quality crystals were grown from slow evaporation of methanol solution (m.p.: 333–335 K).

S3. Refinement

Positional parameters of the hydrogen atoms were freely refined, the U_{iso} values of these atoms were set at 1.2 (1.5 for methyl groups) times U_{eq} of their carrier carbon atom.

Figure 1

Anisotropic ellipsoid representation of the compound I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.

Figure 2

The hydrogen-bonded chain of molecules of I. Hydrogen bonds are shown as dashed lines.

Figure 3

The crystal packing as seen along the chain direction, *i.e.* along [100].

Figure 4

The preparation of the title compound.

2-Isopropyl-5-methylcyclohexyl 5-acetoxy-1,3-oxathiolane-2-carboxylate

Crystal data

C₁₆H₂₆O₅S $M_r = 330.43$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.329 (1) Å b = 13.867 (1) Å c = 23.490 (2) Å V = 1735.8 (4) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire2 large Be window diffractometer Radiation source: Nova (Mo) X-ray Source Graphite monochromator Detector resolution: 5.2679 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009)

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of independent
$wR(F^2) = 0.053$	and constrained refinement
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.026P)^2]$
3632 reflections	where $P = (F_o^2 + 2F_c^2)/3$
277 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 1435 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: -0.04 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 712

 $\theta = 3.0 - 75.3^{\circ}$

 $\mu = 0.21 \text{ mm}^{-1}$ T = 100 K

 $R_{\rm int} = 0.025$

 $h = -6 \rightarrow 6$

 $k = -17 \rightarrow 19$

 $l = -18 \rightarrow 28$

Prism, colourless $0.3 \times 0.3 \times 0.15$ mm

 $T_{\rm min} = 0.719, \ T_{\rm max} = 1.000$

 $\theta_{\rm max} = 27.8^\circ, \ \theta_{\rm min} = 2.9^\circ$

11503 measured reflections

3632 independent reflections

3175 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.264 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 3953 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.2221 (3)	0.81153 (11)	0.22603 (6)	0.0144 (3)
H1	0.055 (3)	0.7890 (12)	0.2363 (5)	0.017*
C2	0.2271 (3)	0.92125 (11)	0.22689 (6)	0.0133 (3)

Н2	0.402(3)	0 9383 (11)	0 2176 (6)	0.016*
C21	0.162(3)	0.96521 (11)	0.28540 (6)	0.0163(3)
H21	0.277(3)	0.9324 (11)	0.3133(7)	0.020*
C22	-0.1041(3)	0.95024 (13)	0.30376 (8)	0.0248 (4)
H22A	-0.139(3)	0.9755 (13)	0.3442 (8)	0.037*
H22B	-0.154(3)	0.8837 (14)	0.3016 (7)	0.037*
H22C	-0.216(3)	0.9878 (14)	0.2804 (8)	0.037*
C23	0.2308 (3)	1.07241 (12)	0.28675 (7)	0.0207 (4)
H23A	0.126 (3)	1.1091 (13)	0.2621 (7)	0.031*
H23B	0.396 (3)	1.0834 (12)	0.2739 (7)	0.031*
H23C	0.207 (3)	1.0990 (12)	0.3264 (7)	0.031*
C3	0.0559 (3)	0.95554 (11)	0.17848 (6)	0.0193 (3)
НЗА	-0.122(3)	0.9338 (12)	0.1888 (7)	0.023*
H3B	0.049 (3)	1.0270 (12)	0.1771 (6)	0.023*
C4	0.1377 (3)	0.91614 (12)	0.12123 (7)	0.0222 (4)
H4A	0.300 (3)	0.9392 (12)	0.1134 (7)	0.027*
H4B	0.025 (3)	0.9406 (12)	0.0913 (7)	0.027*
C5	0.1436 (3)	0.80595 (12)	0.12053 (6)	0.0199 (4)
Н5	-0.025 (3)	0.7843 (12)	0.1282 (6)	0.024*
C51	0.2389 (4)	0.76739 (13)	0.06413 (8)	0.0305 (4)
H51A	0.398 (4)	0.7932 (14)	0.0557 (7)	0.046*
H51B	0.137 (3)	0.7914 (15)	0.0335 (8)	0.046*
H51C	0.245 (3)	0.6975 (14)	0.0650 (8)	0.046*
C6	0.3052 (3)	0.76948 (11)	0.16982 (6)	0.0172 (3)
H6A	0.478 (3)	0.7877 (12)	0.1612 (6)	0.021*
H6B	0.305 (3)	0.6970 (12)	0.1714 (6)	0.021*
O11	0.39944 (16)	0.77425 (7)	0.26904 (4)	0.0146 (2)
C12	0.3058 (3)	0.72616 (10)	0.31299 (6)	0.0134 (3)
O12	0.08816 (18)	0.70999 (9)	0.32180 (4)	0.0214 (2)
C13	0.5134 (3)	0.69492 (11)	0.35302 (6)	0.0146 (3)
H13	0.672 (3)	0.6830 (11)	0.3325 (6)	0.018*
S14	0.56357 (7)	0.79072 (3)	0.404699 (15)	0.01686 (9)
C15	0.3109 (3)	0.73820 (11)	0.44548 (6)	0.0176 (3)
H15A	0.327 (3)	0.7581 (11)	0.4845 (7)	0.021*
H15B	0.150 (3)	0.7576 (11)	0.4298 (7)	0.021*
C16	0.3439 (3)	0.63111 (12)	0.43767 (6)	0.0189 (3)
H16	0.175 (3)	0.5948 (11)	0.4441 (6)	0.023*
O17	0.4379 (2)	0.61176 (7)	0.38320 (4)	0.0205 (2)
O18	0.52454 (18)	0.59729 (7)	0.47832 (4)	0.0206 (2)
C19	0.4838 (3)	0.50989 (11)	0.50215 (6)	0.0193 (3)
O19	0.3034 (2)	0.46223 (9)	0.49229 (6)	0.0418 (4)
C20	0.6923 (3)	0.48274 (13)	0.54115 (7)	0.0252 (4)
H20A	0.709 (3)	0.5287 (14)	0.5686 (8)	0.038*
H20B	0.850 (3)	0.4807 (13)	0.5212 (8)	0.038*
H20C	0.659 (3)	0.4227 (13)	0.5576 (7)	0.038*

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0124 (7)	0.0178 (9)	0.0129 (8)	-0.0003 (7)	-0.0033 (6)	0.0033 (6)
C2	0.0115 (7)	0.0157 (8)	0.0127 (8)	-0.0026 (6)	-0.0008 (6)	0.0021 (6)
C21	0.0179 (8)	0.0171 (8)	0.0137 (8)	0.0017 (7)	-0.0020 (6)	0.0002 (6)
C22	0.0232 (9)	0.0248 (10)	0.0265 (10)	-0.0013 (8)	0.0080 (8)	-0.0066 (7)
C23	0.0247 (9)	0.0181 (9)	0.0192 (10)	0.0005 (7)	-0.0012 (7)	-0.0027 (7)
C3	0.0246 (9)	0.0149 (8)	0.0184 (8)	0.0007 (8)	-0.0050 (7)	0.0025 (6)
C4	0.0310 (10)	0.0200 (9)	0.0157 (8)	-0.0019 (7)	-0.0068 (7)	0.0038 (7)
C5	0.0255 (8)	0.0188 (9)	0.0155 (8)	-0.0053 (7)	-0.0037 (6)	-0.0011 (7)
C51	0.0474 (12)	0.0260 (11)	0.0180 (9)	-0.0037 (10)	-0.0045 (8)	-0.0035 (8)
C6	0.0198 (8)	0.0142 (9)	0.0175 (8)	0.0005 (7)	0.0004 (6)	-0.0005 (6)
O11	0.0124 (5)	0.0178 (6)	0.0137 (5)	0.0008 (5)	-0.0006 (4)	0.0037 (4)
C12	0.0159 (8)	0.0115 (8)	0.0126 (8)	-0.0005 (6)	0.0010 (6)	-0.0021 (6)
O12	0.0138 (5)	0.0287 (6)	0.0218 (6)	-0.0059 (5)	-0.0009 (4)	0.0072 (5)
C13	0.0158 (8)	0.0156 (8)	0.0124 (7)	0.0031 (6)	0.0013 (5)	-0.0005 (6)
S14	0.01923 (18)	0.01732 (18)	0.01403 (18)	-0.00361 (17)	-0.00206 (15)	0.00048 (16)
C15	0.0176 (8)	0.0250 (9)	0.0101 (8)	0.0018 (7)	0.0015 (6)	0.0009 (6)
C16	0.0186 (8)	0.0236 (9)	0.0145 (8)	-0.0040 (8)	-0.0029 (6)	0.0058 (7)
O17	0.0326 (6)	0.0136 (5)	0.0153 (5)	0.0006 (5)	-0.0039 (5)	0.0012 (4)
O18	0.0229 (6)	0.0205 (6)	0.0183 (5)	-0.0065 (5)	-0.0073 (4)	0.0079 (4)
C19	0.0224 (8)	0.0180 (8)	0.0174 (8)	-0.0002 (7)	0.0028 (6)	0.0046 (6)
019	0.0291 (6)	0.0330 (8)	0.0632 (9)	-0.0137 (6)	-0.0157 (6)	0.0248 (7)
C20	0.0335 (10)	0.0230 (10)	0.0193 (9)	-0.0006 (8)	-0.0049(8)	0.0050 (8)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

1.4768 (16)	C51—H51A	0.94 (2)
1.510(2)	C51—H51B	0.961 (18)
1.522 (2)	C51—H51C	0.970 (19)
0.975 (15)	С6—Н6А	0.975 (15)
1.533 (2)	С6—Н6В	1.006 (16)
1.537 (2)	O11—C12	1.3264 (16)
0.986 (15)	C12—O12	1.1991 (16)
1.522 (2)	C12—C13	1.5155 (19)
1.525 (2)	C13—O17	1.4122 (17)
0.990 (16)	C13—S14	1.8193 (15)
1.029 (19)	C13—H13	0.989 (15)
0.961 (19)	S14—C15	1.8059 (16)
0.965 (18)	C15—C16	1.507 (2)
0.951 (17)	C15—H15A	0.961 (16)
0.945 (18)	C15—H15B	0.973 (15)
1.009 (17)	C16—O17	1.4000 (18)
1.515 (2)	C16—O18	1.4345 (17)
1.024 (16)	C16—H16	1.042 (16)
0.992 (16)	O18—C19	1.3526 (17)
1.528 (2)	C19—O19	1.1891 (17)
	$\begin{array}{c} 1.4768 \ (16) \\ 1.510 \ (2) \\ 1.522 \ (2) \\ 0.975 \ (15) \\ 1.533 \ (2) \\ 1.537 \ (2) \\ 0.986 \ (15) \\ 1.522 \ (2) \\ 1.525 \ (2) \\ 0.990 \ (16) \\ 1.029 \ (19) \\ 0.961 \ (19) \\ 0.965 \ (18) \\ 0.951 \ (17) \\ 0.945 \ (18) \\ 1.009 \ (17) \\ 1.515 \ (2) \\ 1.024 \ (16) \\ 0.992 \ (16) \\ 1.528 \ (2) \end{array}$	1.4768 (16) $C51-H51A$ $1.510 (2)$ $C51-H51B$ $1.522 (2)$ $C51-H51C$ $0.975 (15)$ $C6-H6A$ $1.533 (2)$ $C6-H6B$ $1.537 (2)$ $O11C12$ $0.986 (15)$ $C12O12$ $1.522 (2)$ $C12C13$ $1.525 (2)$ $C13O17$ $0.990 (16)$ $C13S14$ $1.029 (19)$ $C13H13$ $0.961 (19)$ $S14C15$ $0.965 (18)$ $C15C16$ $0.945 (18)$ $C15H15B$ $1.009 (17)$ $C16O17$ $1.515 (2)$ $C16O18$ $1.024 (16)$ $C16H16$ $0.992 (16)$ $O18C19$ $1.528 (2)$ $C19O19$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C21—C22—H22B112.2 (10)C12—C13—S14108.21 (10)H22A—C22—H22B109.0 (15)017—C13—H13110.7 (9)C21—C22—H22C110.8 (11)C12—C13—H13111.7 (9)H22A—C22—H22C103.2 (14)S14—C13—H13108.8 (9)H22B—C22—H22C108.5 (15)C15—S14—C1387.13 (7)C21—C23—H23A112.2 (10)C16—C15—S14104.23 (11)C21—C23—H23B111.0 (11)C16—C15—H15A112.8 (9)H23A—C23—H23B105.6 (14)S14—C15—H15A108.9 (9)	
H22A-C22-H22B109.0 (15)O17-C13-H13110.7 (9)C21-C22-H22C110.8 (11)C12-C13-H13111.7 (9)H22A-C22-H22C103.2 (14)S14-C13-H13108.8 (9)H22B-C22-H22C108.5 (15)C15-S14-C1387.13 (7)C21-C23-H23A112.2 (10)C16-C15-S14104.23 (11)C21-C23-H23B111.0 (11)C16-C15-H15A112.8 (9)H23A-C23-H23B105.6 (14)S14-C15-H15A108.9 (9)	
C21—C22—H22C110.8 (11)C12—C13—H13111.7 (9)H22A—C22—H22C103.2 (14)S14—C13—H13108.8 (9)H22B—C22—H22C108.5 (15)C15—S14—C1387.13 (7)C21—C23—H23A112.2 (10)C16—C15—S14104.23 (11)C21—C23—H23B111.0 (11)C16—C15—H15A112.8 (9)H23A—C23—H23B105.6 (14)S14—C15—H15A108.9 (9)	
H22A-C22-H22C103.2 (14)S14-C13-H13108.8 (9)H22B-C22-H22C108.5 (15)C15-S14-C1387.13 (7)C21-C23-H23A112.2 (10)C16-C15-S14104.23 (11)C21-C23-H23B111.0 (11)C16-C15-H15A112.8 (9)H23A-C23-H23B105.6 (14)S14-C15-H15A108.9 (9)	
H22B-C22-H22C108.5 (15)C15-S14-C1387.13 (7)C21-C23-H23A112.2 (10)C16-C15-S14104.23 (11)C21-C23-H23B111.0 (11)C16-C15-H15A112.8 (9)H23A-C23-H23B105.6 (14)S14-C15-H15A108.9 (9)	
C21—C23—H23A112.2 (10)C16—C15—S14104.23 (11)C21—C23—H23B111.0 (11)C16—C15—H15A112.8 (9)H23A—C23—H23B105.6 (14)S14—C15—H15A108.9 (9)	
C21—C23—H23B111.0 (11)C16—C15—H15A112.8 (9)H23A—C23—H23B105.6 (14)S14—C15—H15A108.9 (9)	
H23A—C23—H23B 105.6 (14) S14—C15—H15A 108.9 (9)	
C21—C23—H23C 110.4 (10) C16—C15—H15B 109.2 (9)	
H23A—C23—H23C 107.0 (14) S14—C15—H15B 110.3 (9)	
H23B—C23—H23C 110.5 (14) H15A—C15—H15B 111.1 (13)	
C4—C3—C2 112.04 (14) 017—C16—O18 107.80 (12)	
C4—C3—H3A 111.7 (9) 017—C16—C15 109.99 (12)	
C2—C3—H3A 106.5 (9) 018—C16—C15 108.64 (12)	
C4—C3—H3B 110.0 (8) O17—C16—H16 110.4 (8)	
C2—C3—H3B 110.9 (9) O18—C16—H16 109.0 (8)	
H3A—C3—H3B 105.5 (13) C15—C16—H16 111.0 (8)	
C3—C4—C5 112.08 (13) C16—O17—C13 113.85 (11)	
C3—C4—H4A 108.4 (10) C19—O18—C16 117.42 (11)	
C5—C4—H4A 108.6 (10) 019—C19—O18 123.18 (13)	
C3—C4—H4B 109.6 (9) 019—C19—C20 125.64 (15)	
C5—C4—H4B 110.5 (9) 018—C19—C20 111.18 (13)	
H4A—C4—H4B 107.6 (13) C19—C20—H20A 109.4 (11)	

C51—C5—C4	111.65 (14)	C19—C20—H20B	111.1 (10)
C51—C5—C6	110.89 (13)	H20A—C20—H20B	106.0 (16)
C4—C5—C6	109.53 (13)	C19—C20—H20C	109.6 (11)
С51—С5—Н5	111.4 (9)	H20A—C20—H20C	110.5 (16)
С4—С5—Н5	106.9 (10)	H20B—C20—H20C	110.1 (15)
O11—C1—C2—C3	175.68 (11)	C1-011-C12-012	-0.5 (2)
C6-C1-C2-C3	57.86 (16)	C1-011-C12-C13	-179.08 (11)
O11—C1—C2—C21	-56.78 (16)	O12—C12—C13—O17	27.68 (19)
C6-C1-C2-C21	-174.59 (12)	O11—C12—C13—O17	-153.67 (11)
C1—C2—C21—C22	-68.34 (17)	O12—C12—C13—S14	-89.49 (16)
C3—C2—C21—C22	55.10 (18)	O11—C12—C13—S14	89.16 (12)
C1—C2—C21—C23	167.51 (14)	O17—C13—S14—C15	-33.57 (10)
C3—C2—C21—C23	-69.05 (17)	C12-C13-S14-C15	84.90 (11)
C1—C2—C3—C4	-57.56 (17)	C13—S14—C15—C16	37.16 (10)
C21—C2—C3—C4	175.32 (13)	S14-C15-C16-O17	-33.65 (15)
C2—C3—C4—C5	57.98 (18)	S14-C15-C16-O18	84.12 (12)
C3—C4—C5—C51	-176.96 (15)	O18—C16—O17—C13	-109.17 (13)
C3—C4—C5—C6	-53.74 (19)	C15—C16—O17—C13	9.12 (17)
O11—C1—C6—C5	-177.46 (12)	C12-C13-O17-C16	-97.69 (14)
C2-C1-C6-C5	-57.75 (17)	S14—C13—O17—C16	19.84 (14)
C51—C5—C6—C1	176.82 (14)	O17—C16—O18—C19	-98.38 (14)
C4—C5—C6—C1	53.16 (17)	C15-C16-O18-C19	142.46 (13)
C6-C1-O11-C12	-123.41 (13)	C16—O18—C19—O19	-2.4 (2)
C2-C1-O11-C12	114.39 (14)	C16—O18—C19—C20	177.29 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C13—H13…O12 ⁱ	0.989 (15)	2.261 (15)	3.1563 (18)	150.0 (12)
C15—H15A…S14 ⁱⁱ	0.961 (16)	3.033 (15)	3.7794 (15)	135.6 (11)
C20—H20 <i>B</i> ···O19 ⁱ	0.961 (18)	2.524 (18)	3.464 (2)	166.0 (14)

Symmetry codes: (i) x+1, y, z; (ii) x-1/2, -y+3/2, -z+1.