organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-[Piperazine-1,4-diylbis(propylenenitrilomethylidyne)]diphenol

Ruibo Xu,^a Xingyou Xu,^b* Xujie Yang,^c Yuping Huang^a and Chunmei Xu^a

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^bHuaiyin Institute of Technology, Huaian 223003, People's Republic of China, and ^cMaterials Chemistry Laboratory, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China Correspondence e-mail: xuruibo9125@163.com

Received 25 October 2009; accepted 30 October 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.103; data-to-parameter ratio = 7.4.

In the title molecule, $C_{24}H_{32}N_4O_2$, the piperazine ring adopts a chair conformation and the dihedral angle between the two benzene rings is 35.4 (1)°. In the crystal structure, intermolecular $O-H\cdots N$ hydrogen bonds link molecules into chains along [001].

Related literature

For the properties of piperazine derivatives, see: Keypour *et al.* (2008, 2009); Paital *et al.* (2009). For related structures, see: Thirumurugan *et al.* (1998); Yogavel *et al.* (2003).

Experimental

Crystal data

 $\begin{array}{l} C_{24}H_{32}N_4O_2\\ M_r = 408.54\\ \text{Monoclinic, } Cc\\ a = 5.9701 \ (10) \ \text{\AA}\\ b = 30.159 \ (3) \ \text{\AA} \end{array}$

c = 12.8348 (18) Å
$\beta = 97.558 \ (2)^{\circ}$
V = 2290.9 (6) Å ³
Z = 4
Mo $K\alpha$ radiation

H-atom parameters constrained

 $\mu = 0.08 \text{ mm}^{-1}$ T = 298 K

Data collection

Siemens SMART CCD5997 measured reflectionsdiffractometer2016 independent reflectionsAbsorption correction: multi-scan
(SADABS; Sheldrick, 1996)
 $T_{\min} = 0.987, T_{\max} = 0.992$ 3897 measured reflections $R_{int} = 0.068$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.103$ S = 0.962016 reflections 271 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$02-H2\cdots N1^{i}$	0.82	1.98	2.762 (4)	159
$01-H1\cdots N2^{ii}$	0.82	2.00	2.780 (4)	159

2 restraints

 $\Delta \rho_{\text{max}} = 0.14 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.19 \text{ e } \text{\AA}^{-3}$

Symmetry codes: (i) x, y, z + 1; (ii) x, y, z - 1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Key Project for Fundamental Research of the Jiangsu Provincial Educational Committee (07KJA150011), the Opened Funds of Jiangsu Key Laboratory of Marine Biotechnology of Huaihai Institute of Technology (2009HS06) and the QingLan Project of Jiangsu Province (2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2937).

References

- Keypour, H., Rezaeivala, M., Valencia, L. & Pérez-Lourido, P. (2008). Polyhedron, 27, 3172–3176.
- Keypour, H., Rezaeivala, M., Valencia, L., Pérez-Lourido, P. & Mahmoudkhani, A. H. (2009). *Polyhedron*, doi:10.1016/j.poly.2009,07.012.
- Paital, A. R., Mandal, D., Huang, X., Li, J., Aromic, G. & Ray, D. (2009). *Dalton Trans.* pp. 1352–1362.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Marappan, M. & Kandaswamy, M. (1998). Acta Cryst. C54, 644–645.
- Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, 083– 85.

supporting information

Acta Cryst. (2009). E65, o2996 [doi:10.1107/S1600536809045620]

4,4'-[Piperazine-1,4-diylbis(propylenenitrilomethylidyne)]diphenol

Ruibo Xu, Xingyou Xu, Xujie Yang, Yuping Huang and Chunmei Xu

S1. Comment

Piperazine derivatives possesses interesting structures and properties (Yogavel *et al.*, 2003; Thirumurugan *et al.*, 1998; Keypour *et al.*, 2008,2009; Paital *et al.*, 2009), therefore, our group have designed and prepared series of Schiff bases and complexes derived from substituted piperazines. As part of our work, the title compound (I) a potential hexadentate Schiff base ligand, was synthesized in our group and herein we report the crystal structure.

The molecular structure of (I) is shown in Fig. 1. In (I), the C8—N3 and C18—N4 double bond lengths are comparable to reported values (Yogavel *et al.*, 2003; Thirumurugan *et al.*, 1998). The dihedral angle between the two benzene rings (C9—C14 and C19—C24) is 35.4 (1) °. In the piperazine ring, atoms C1/C2/C3/C4 are essentially planar (the mean deviation from the plane is 0.0032 Å), and atoms N1 and N2 atom lie 0.6936 and 0.6693 Å either side of this plane. This four atom plane makes a dihedral angle of 50.9 (3)° with the plane of atoms C2/N2/C3 and 52.7 (3) ° with atoms C1/N1/C4, respectively, in accordance with the chair conformation of the piperazine ring. In the crystal structure, intermolecular O—H···N hydrogen bonds link molecules into one-dimensional chains along [001](Fig.2).

S2. Experimental

A solution of *N*,*N*'-bis(*N*-aminopropyl)-piperazine (1.5 mmol in 10 ml anhydrous methanol) was added dropwise with constant stirring to a solution of parahydroxybenzaldehyde (3 mmol in 15 ml anhydrous methanol) at 325 K for 3 h. The resulting mixture was filtered. After cooling, the filtrate was evaporated at ambient environment. Several days later, pink crystals suitable for X-ray analysis were collected and washed with small amount of methanol and dried at room temperature.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.97 Å(piperazinyl), 0.93 Å(benzene), 0.82 Å(hydroxyl) and 0.97 Å(methylene), and refined in riding mode with $U_{iso}(H) = 1.5 U_{eq}(O)$ and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of (1). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

One-dimensional chain structure of (1) constructed by O—H…N intermolecular hydrogen bonds (dashed lines) along [001].

4,4'-[Piperazine-1,4-diylbis(propylenenitrilomethylidyne)]diphenol

Crystal data

C₂₄H₃₂N₄O₂ $M_r = 408.54$ Monoclinic, *Cc* Hall symbol: C -2yc a = 5.9701 (10) Å b = 30.159 (3) Å c = 12.8348 (18) Å $\beta = 97.558 (2)^{\circ}$ $V = 2290.9 (6) \text{ Å}^3$ Z = 4

Data collection

Siemens SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.987, T_{\max} = 0.992$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.103$ S = 0.962016 reflections 271 parameters F(000) = 880 $D_x = 1.185 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1760 reflections $\theta = 2.7-24.9^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 298 KLamellate, pink $0.17 \times 0.15 \times 0.11 \text{ mm}$

5997 measured reflections 2016 independent reflections 1387 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 1.4^\circ$ $h = -7 \rightarrow 6$ $k = -30 \rightarrow 35$ $l = -15 \rightarrow 15$

2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0507P)^2]$	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	7.	$U_{ico}*/U_{oo}$	
N1	0.6528.(5)	0 39796 (9)	0 5395 (2)	0.0440 (7)	
N2	0.6327(5)	0.34403(9)	0.3390(2) 0.7270(2)	0.0450(7)	
N3	0.6917(7)	0.47133(10)	0.2563(2)	0.0619 (9)	
N4	0.5753(7)	0.26995 (10)	1.0120 (2)	0.0604 (9)	
01	1.0094 (5)	0.38009 (9)	-0.1521(2)	0.0684 (8)	
H1	0.8981	0.3653	-0.1744	0.103*	
O2	0.2701 (4)	0.37289 (8)	1.40788 (19)	0.0592 (7)	
H2	0.3880	0.3735	1.4486	0.089*	
C1	0.5611 (7)	0.41527 (12)	0.6330 (3)	0.0509 (10)	
H1A	0.4439	0.4369	0.6113	0.061*	
H1B	0.6804	0.4300	0.6789	0.061*	
C2	0.4643 (7)	0.37801 (12)	0.6919 (3)	0.0524 (10)	
H2A	0.4043	0.3901	0.7526	0.063*	
H2B	0.3403	0.3644	0.6467	0.063*	
C3	0.7284 (7)	0.32708 (12)	0.6338 (3)	0.0510 (10)	
H3A	0.6111	0.3122	0.5871	0.061*	
H3B	0.8464	0.3057	0.6560	0.061*	
C4	0.8247 (6)	0.36472 (12)	0.5762 (3)	0.0504 (10)	
H4A	0.9453	0.3788	0.6226	0.060*	
H4B	0.8890	0.3530	0.5163	0.060*	
C5	0.7518 (7)	0.43362 (13)	0.4807 (3)	0.0552 (10)	
H5A	0.8202	0.4203	0.4237	0.066*	
H5B	0.8712	0.4479	0.5273	0.066*	
C6	0.5862 (8)	0.46839 (13)	0.4356 (3)	0.0628 (11)	
H6A	0.5490	0.4873	0.4920	0.075*	
H6B	0.4481	0.4540	0.4044	0.075*	
C7	0.6779 (9)	0.49699 (13)	0.3524 (3)	0.0680 (12)	
H7A	0.5796	0.5224	0.3361	0.082*	
H7B	0.8268	0.5079	0.3798	0.082*	
C8	0.8797 (8)	0.46994 (12)	0.2204 (3)	0.0555 (11)	
H8	1.0022	0.4850	0.2563	0.067*	
C9	0.9117 (7)	0.44553 (11)	0.1246 (3)	0.0479 (9)	

C10	1.1116 (7)	0.44905 (13)	0.0817 (3)	0.0608 (10)
H10	1.2280	0.4664	0.1153	0.073*
C11	1.1427 (7)	0.42709 (14)	-0.0112 (3)	0.0584 (10)
H11	1.2774	0.4304	-0.0395	0.070*
C12	0.9734 (6)	0.40044 (12)	-0.0611 (3)	0.0471 (9)
C13	0.7736 (6)	0.39566 (12)	-0.0171 (3)	0.0501 (10)
H13	0.6592	0.3775	-0.0497	0.060*
C14	0.7435 (6)	0.41775 (12)	0.0751 (3)	0.0472 (9)
H14	0.6100	0.4140	0.1041	0.057*
C15	0.5266 (7)	0.30844 (12)	0.7830 (3)	0.0566 (10)
H15A	0.4159	0.2933	0.7332	0.068*
H15B	0.4465	0.3219	0.8360	0.068*
C16	0.6907 (8)	0.27448 (12)	0.8355 (3)	0.0591 (11)
H16A	0.8220	0.2896	0.8713	0.071*
H16B	0.7411	0.2555	0.7821	0.071*
C17	0.5864 (9)	0.24597 (14)	0.9141 (3)	0.0703 (13)
H17A	0.4353	0.2372	0.8841	0.084*
H17B	0.6759	0.2193	0.9286	0.084*
C18	0.3869 (7)	0.28242 (12)	1.0347 (3)	0.0530 (10)
H18	0.2584	0.2760	0.9879	0.064*
C19	0.3598 (7)	0.30661 (11)	1.1315 (3)	0.0446 (9)
C20	0.5407 (7)	0.31283 (13)	1.2093 (3)	0.0563 (11)
H20	0.6820	0.3019	1.1994	0.068*
C21	0.5156 (7)	0.33506 (13)	1.3016 (3)	0.0566 (10)
H21	0.6392	0.3387	1.3530	0.068*
C22	0.3063 (6)	0.35184 (11)	1.3173 (3)	0.0462 (9)
C23	0.1256 (7)	0.34603 (12)	1.2404 (3)	0.0517 (9)
H23	-0.0150	0.3574	1.2501	0.062*
C24	0.1506 (7)	0.32352 (12)	1.1488 (3)	0.0545 (10)
H24	0.0260	0.3196	1.0980	0.065*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0460 (18)	0.0507 (17)	0.0371 (16)	0.0038 (15)	0.0126 (15)	-0.0067 (14)
N2	0.0486 (18)	0.0493 (17)	0.0378 (16)	0.0054 (15)	0.0086 (14)	-0.0041 (14)
N3	0.086 (3)	0.053 (2)	0.047 (2)	-0.0058 (19)	0.0136 (19)	-0.0030 (17)
N4	0.084 (3)	0.0542 (19)	0.045 (2)	0.0001 (19)	0.0140 (19)	-0.0078 (16)
O1	0.0580 (18)	0.092 (2)	0.0577 (17)	-0.0007 (15)	0.0161 (15)	-0.0221 (16)
02	0.0517 (17)	0.0707 (18)	0.0567 (17)	0.0012 (14)	0.0131 (14)	-0.0143 (14)
C1	0.060(2)	0.054 (2)	0.041 (2)	0.0106 (19)	0.0137 (19)	-0.0060 (18)
C2	0.049 (2)	0.067 (2)	0.043 (2)	0.012 (2)	0.0145 (19)	-0.0047 (19)
C3	0.057 (2)	0.054 (2)	0.043 (2)	0.0123 (19)	0.0086 (19)	-0.0054 (18)
C4	0.045 (2)	0.065 (3)	0.042 (2)	0.0102 (18)	0.0110 (18)	-0.0056 (19)
C5	0.063 (3)	0.058 (2)	0.046 (2)	-0.007(2)	0.014 (2)	-0.0035 (19)
C6	0.083 (3)	0.052 (2)	0.056 (3)	0.003 (2)	0.019 (2)	-0.002(2)
C7	0.105 (4)	0.049 (2)	0.052 (2)	-0.004 (2)	0.019 (2)	-0.008 (2)
C8	0.070 (3)	0.049 (2)	0.047 (2)	-0.005 (2)	0.004 (2)	-0.0016 (18)

C9	0.055 (2)	0.043 (2)	0.044 (2)	0.0047 (18)	0.0010 (19)	0.0022 (17)
C10	0.054 (3)	0.069 (3)	0.057 (2)	-0.009 (2)	-0.001 (2)	-0.007 (2)
C11	0.046 (2)	0.073 (3)	0.056 (2)	0.001 (2)	0.008 (2)	-0.003 (2)
C12	0.047 (2)	0.051 (2)	0.042 (2)	0.0076 (18)	0.0023 (19)	0.0014 (19)
C13	0.052 (2)	0.049 (2)	0.049 (2)	-0.0023 (18)	0.003 (2)	-0.0043 (18)
C14	0.049 (2)	0.049 (2)	0.045 (2)	0.0014 (18)	0.0081 (18)	0.0016 (18)
C15	0.059 (2)	0.064 (2)	0.048 (2)	-0.008 (2)	0.0096 (19)	-0.005 (2)
C16	0.083 (3)	0.050 (2)	0.045 (2)	0.012 (2)	0.012 (2)	-0.0052 (19)
C17	0.113 (4)	0.052 (2)	0.048 (2)	0.001 (3)	0.018 (3)	-0.005 (2)
C18	0.066 (3)	0.049 (2)	0.042 (2)	-0.011 (2)	0.001 (2)	0.0043 (18)
C19	0.055 (2)	0.045 (2)	0.0339 (19)	-0.0059 (18)	0.0061 (17)	0.0028 (16)
C20	0.052 (2)	0.068 (3)	0.051 (2)	0.000 (2)	0.014 (2)	-0.010 (2)
C21	0.047 (2)	0.077 (3)	0.046 (2)	-0.006 (2)	0.005 (2)	-0.016 (2)
C22	0.050 (2)	0.046 (2)	0.044 (2)	-0.0031 (19)	0.010 (2)	-0.0013 (18)
C23	0.047 (2)	0.055 (2)	0.053 (2)	0.0088 (19)	0.006 (2)	0.0049 (19)
C24	0.054 (2)	0.058 (2)	0.047 (2)	0.001 (2)	-0.0086 (19)	0.0080 (19)

Geometric parameters (Å, °)

N1—C4	1.467 (5)	C8—C9	1.466 (5)
N1-C1	1.478 (4)	C8—H8	0.9300
N1C5	1.481 (4)	C9—C10	1.383 (5)
N2—C2	1.465 (5)	C9—C14	1.395 (5)
N2-C15	1.479 (4)	C10—C11	1.398 (5)
N2—C3	1.483 (4)	C10—H10	0.9300
N3—C8	1.269 (5)	C11—C12	1.381 (6)
N3—C7	1.467 (5)	C11—H11	0.9300
N4—C18	1.256 (5)	C12—C13	1.392 (5)
N4—C17	1.458 (5)	C13—C14	1.390 (5)
O1—C12	1.361 (4)	C13—H13	0.9300
01—H1	0.8200	C14—H14	0.9300
O2—C22	1.367 (4)	C15—C16	1.513 (6)
O2—H2	0.8200	C15—H15A	0.9700
C1—C2	1.511 (5)	C15—H15B	0.9700
C1—H1A	0.9700	C16—C17	1.520 (5)
C1—H1B	0.9700	C16—H16A	0.9700
C2—H2A	0.9700	C16—H16B	0.9700
C2—H2B	0.9700	C17—H17A	0.9700
C3—C4	1.509 (5)	C17—H17B	0.9700
С3—НЗА	0.9700	C18—C19	1.468 (5)
С3—Н3В	0.9700	C18—H18	0.9300
C4—H4A	0.9700	C19—C20	1.384 (5)
C4—H4B	0.9700	C19—C24	1.394 (5)
C5—C6	1.504 (6)	C20—C21	1.386 (5)
C5—H5A	0.9700	C20—H20	0.9300
С5—Н5В	0.9700	C21—C22	1.387 (5)
С6—С7	1.529 (6)	C21—H21	0.9300
С6—Н6А	0.9700	C22—C23	1.374 (5)

a			
С6—Н6В	0.9700	C23—C24	1.382 (5)
С7—Н7А	0.9700	С23—Н23	0.9300
С7—Н7В	0.9700	C24—H24	0.9300
C4—N1—C1	107.4 (3)	С10—С9—С8	120.7 (4)
C4—N1—C5	110.5 (3)	C14—C9—C8	121.2 (4)
C1—N1—C5	111.9 (3)	C9—C10—C11	121.5 (4)
C2—N2—C15	109.7 (3)	С9—С10—Н10	119.3
C2—N2—C3	108.3 (3)	C11—C10—H10	119.3
C15—N2—C3	112.1 (3)	C12—C11—C10	120.0 (4)
C8—N3—C7	118.2 (4)	C12—C11—H11	120.0
C18 - N4 - C17	119.5 (4)	C10-C11-H11	120.0
$C_{12} = 0_1 = H_1$	109.5	01-C12-C11	120.0 1181(3)
$C_{22} = 0^{2} = H^{2}$	109.5	01 - C12 - C13	122.8(3)
N1 C1 C2	110.5 (3)	C_{11} C_{12} C_{13}	122.0(3)
N1 = C1 = C2	100.5	C14 C12 - C13	119.1(3) 120.6(3)
NI-CI-HIA	109.5	C14 - C13 - C12	120.0 (5)
C2—CI—HIA	109.5	C14—C13—H13	119.7
NI—CI—HIB	109.5	C12—C13—H13	119.7
C2—C1—H1B	109.5	C13—C14—C9	120.7 (3)
H1A—C1—H1B	108.1	C13—C14—H14	119.7
N2—C2—C1	112.5 (3)	C9—C14—H14	119.7
N2—C2—H2A	109.1	N2—C15—C16	114.4 (3)
C1—C2—H2A	109.1	N2—C15—H15A	108.7
N2—C2—H2B	109.1	C16—C15—H15A	108.7
C1—C2—H2B	109.1	N2—C15—H15B	108.7
H2A—C2—H2B	107.8	C16—C15—H15B	108.7
N2—C3—C4	110.4 (3)	H15A—C15—H15B	107.6
N2—C3—H3A	109.6	C15—C16—C17	112.4 (4)
С4—С3—НЗА	109.6	C15—C16—H16A	109.1
N2—C3—H3B	109.6	C17—C16—H16A	109.1
C4—C3—H3B	109.6	C15—C16—H16B	109.1
H3A—C3—H3B	108.1	C17—C16—H16B	109.1
N1-C4-C3	112.1 (3)	H16A—C16—H16B	107.9
N1—C4—H4A	109.2	N4-C17-C16	1111(3)
$C_3 - C_4 - H_4 \Delta$	109.2	$N4-C17-H17\Delta$	109.4
N1 - C4 - H4B	109.2	C_{16} C_{17} H_{17A}	109.4
C_{2} C_{4} H_{4} H_{4} H_{4}	100.2	N4 C17 H17R	109.4
	109.2	$\mathbf{N} = \mathbf{C} \mathbf{I} - \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{D}$	109.4
$\mathbf{H}_{\mathbf{H}} = \mathbf{H}_{\mathbf{H}} = \mathbf{H}_{\mathbf{H}} = \mathbf{H}_{\mathbf{H}}$	107.9		109.4
NI = C5 = U5A	114.0 (3)	HI/A - CI/-HI/B	108.0
NI—C5—H5A	108.6	N4	123.2 (4)
C6—C5—H5A	108.6	N4—C18—H18	118.4
N1—C5—H5B	108.6	С19—С18—Н18	118.4
C6—C5—H5B	108.6	C20—C19—C24	117.8 (3)
H5A—C5—H5B	107.6	C20—C19—C18	121.0 (4)
C5—C6—C7	112.6 (4)	C24—C19—C18	121.2 (4)
С5—С6—Н6А	109.1	C19—C20—C21	121.3 (4)
С7—С6—Н6А	109.1	C19—C20—H20	119.3
С5—С6—Н6В	109.1	C21—C20—H20	119.3

С7—С6—Н6В	109.1	C20—C21—C22	120.1 (4)
H6A—C6—H6B	107.8	C20—C21—H21	120.0
N3—C7—C6	110.8 (3)	C22—C21—H21	120.0
N3—C7—H7A	109.5	O2—C22—C23	118.2 (3)
С6—С7—Н7А	109.5	O2—C22—C21	122.6 (3)
N3—C7—H7B	109.5	C23—C22—C21	119.1 (3)
С6—С7—Н7В	109.5	C22—C23—C24	120.7 (3)
H7A—C7—H7B	108.1	С22—С23—Н23	119.6
N3—C8—C9	122.7 (4)	С24—С23—Н23	119.6
N3—C8—H8	118.6	C23—C24—C19	120.9 (4)
С9—С8—Н8	118.6	C23—C24—H24	119.5
C10—C9—C14	118.1 (3)	C19—C24—H24	119.5
C4—N1—C1—C2	-578(4)	01 - C12 - C13 - C14	-1789(3)
$C_{5}-N_{1}-C_{1}-C_{2}$	-1793(3)	$C_{11} - C_{12} - C_{13} - C_{14}$	07(6)
$C_{15} = N_{2} = C_{2} = C_{1}$	-1794(3)	C12 - C13 - C14 - C9	0.7(0)
$C_3 - N_2 - C_2 - C_1$	-56.8(4)	C10-C9-C14-C13	-2.5(5)
N1-C1-C2-N2	59.2 (4)	C8-C9-C14-C13	178.4 (3)
C2—N2—C3—C4	56.1 (4)	C2—N2—C15—C16	-172.3(3)
C15—N2—C3—C4	177.3 (3)	C3—N2—C15—C16	67.3 (4)
C1—N1—C4—C3	59.4 (4)	N2-C15-C16-C17	165.2 (3)
C5—N1—C4—C3	-178.3 (3)	C18—N4—C17—C16	109.1 (5)
N2—C3—C4—N1	-60.0 (4)	C15—C16—C17—N4	-77.3 (5)
C4—N1—C5—C6	177.5 (3)	C17—N4—C18—C19	179.8 (3)
C1—N1—C5—C6	-62.9 (4)	N4—C18—C19—C20	-7.1 (5)
N1-C5-C6-C7	-164.6 (3)	N4—C18—C19—C24	173.7 (3)
C8—N3—C7—C6	-125.9 (4)	C24—C19—C20—C21	0.1 (5)
C5—C6—C7—N3	70.6 (5)	C18—C19—C20—C21	-179.0 (3)
C7—N3—C8—C9	-179.6 (3)	C19—C20—C21—C22	-0.4 (6)
N3—C8—C9—C10	172.5 (4)	C20—C21—C22—O2	178.0 (3)
N3—C8—C9—C14	-8.3 (5)	C20—C21—C22—C23	0.1 (5)
C14—C9—C10—C11	2.7 (6)	O2—C22—C23—C24	-177.6 (3)
C8—C9—C10—C11	-178.1 (3)	C21—C22—C23—C24	0.4 (5)
C9—C10—C11—C12	-1.3 (6)	C22—C23—C24—C19	-0.7 (5)
C10-C11-C12-O1	179.2 (3)	C20-C19-C24-C23	0.4 (5)
C10-C11-C12-C13	-0.4 (6)	C18—C19—C24—C23	179.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2···N1 ⁱ	0.82	1.98	2.762 (4)	159
O1—H1···N2 ⁱⁱ	0.82	2.00	2.780 (4)	159

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) *x*, *y*, *z*-1.