organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second monoclinic polymorph of N-cyclo­hexyl-N-ethyl­benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 9 November 2009; accepted 10 November 2009; online 18 November 2009)

The crystal structure of the title compound, C14H21NO2S, is a polymorph of the structure reported by Khan et al. [Acta Cryst. (2009), E65, o2867] which is also monoclinic (space group P21/c). The unit cell in the title structure is approximately half the volume of the previously reported polymorph and the asymmetric unit of the title compound contains one mol­ecule rather than two independent mol­ecules in the other polymorph. In the title mol­ecule, the cyclo­hexane ring is in the typical chair form. In the crystal structure, mol­ecules are linked via weak inter­molecular C—H⋯O inter­actions, forming a chain along the b-axis direction.

Related literature

For the synthesis of related mol­ecules, see: Arshad et al. (2009[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596.]); Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For applications of sulfonamides, see: Connor (1998[Connor, E. E. (1998). Prim. Care Update Ob. Gyn. 5, 32-35.]); Berredjem et al. (2000[Berredjem, M., Ré gainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249-264.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]); Xiao & Timberlake (2000[Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem.37, 773-777.]). For the structure of the other polymorph, see: Khan et al. (2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21NO2S

  • Mr = 267.38

  • Monoclinic, P 21 /n

  • a = 8.3837 (4) Å

  • b = 11.4467 (5) Å

  • c = 15.1488 (7) Å

  • β = 92.541 (2)°

  • V = 1452.34 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.41 × 0.28 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.916, Tmax = 0.976

  • 15910 measured reflections

  • 3651 independent reflections

  • 2481 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.02

  • 3651 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.58 3.482 (2) 163
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia,1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides are an important category of pharmaceutical compounds with a broad spectrum of biological activities such as herbicidal, anti-malarial, anti-convulsant and anti-hypertensive (Connor, 1998; Xiao & Timberlake, 2000; Berredjem et al., 2000; Lee & Lee, 2002).

As a part of our ongoing research program regarding the synthesis of sulfur containing heterocyclic compounds (Arshad et al., 2009; Zia-ur-Rehman et al. 2009), we, herein report the crystal structure of the title compound as a new polymorph of the structure previously reported by Khan et al. (2009) which is also monoclinic (space group P21/c), but with completely different unit cell constants. The molecular structure of the title compound (I) is shown in Fig. 1. The asymmetric unit contains single molecule instead of two as observed in the previous form. In the molecule of (I), bond lengths (Allen et al., 1987) and bond angles are within the normal ranges. The cyclohexane ring is in the chair form. In the crystal structure, molecule are linked via weak intermolecular C—H···O hydrogen bonds to form chains along the b axis direction.

Related literature top

For the synthesis of related molecules, see: Arshad et al. (2009); Zia-ur-Rehman et al. (2009). For applications of sulfonamides, see: Connor (1998); Berredjem et al. (2000); Lee & Lee (2002); Xiao & Timberlake (2000). For the structure of the other polymorph, see: Khan et al. (2009). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of N-cyclohexylbenzene sulfonamide (1.0 g, 0.43 mmol), sodium hydride (0.21 g; 0.88 mmoles) and N, N-dimethylformamide (10.0 ml) was stirred at room temperature for half an hour followed by addition of ethyl iodide (0.134 g; 0.86 mmoles). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from methanol.

Refinement top

All hydrogen atoms were identified in a difference Fourier map. However, they were fixed in ideal positions and treated as riding on their parent atoms. The following distances were used: Cmethyl = —H 0.98 Å. Caromatic—H 0.95 Å. U(H) was set to 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia,1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing weak C-H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
N-cyclohexyl-N-ethylbenzenesulfonamide top
Crystal data top
C14H21NO2SF(000) = 576
Mr = 267.38Dx = 1.223 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4610 reflections
a = 8.3837 (4) Åθ = 2.8–27.6°
b = 11.4467 (5) ŵ = 0.22 mm1
c = 15.1488 (7) ÅT = 296 K
β = 92.541 (2)°Needle, colourless
V = 1452.34 (12) Å30.41 × 0.28 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3651 independent reflections
Radiation source: fine-focus sealed tube2481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1110
Tmin = 0.916, Tmax = 0.976k = 1514
15910 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.3342P]
where P = (Fo2 + 2Fc2)/3
3651 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H21NO2SV = 1452.34 (12) Å3
Mr = 267.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3837 (4) ŵ = 0.22 mm1
b = 11.4467 (5) ÅT = 296 K
c = 15.1488 (7) Å0.41 × 0.28 × 0.11 mm
β = 92.541 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3651 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2481 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.976Rint = 0.034
15910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
3651 reflectionsΔρmin = 0.36 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22296 (5)0.78592 (4)0.73395 (3)0.04988 (15)
O10.14310 (16)0.68075 (13)0.70635 (9)0.0702 (4)
O20.14198 (15)0.89484 (12)0.72376 (10)0.0720 (4)
N10.38527 (16)0.79318 (12)0.68134 (9)0.0455 (3)
C10.27998 (18)0.77256 (14)0.84693 (10)0.0427 (4)
C20.2929 (3)0.87099 (18)0.89914 (13)0.0658 (5)
H20.26410.94360.87600.079*
C30.3483 (3)0.8612 (2)0.98515 (15)0.0841 (7)
H30.35690.92761.02050.101*
C40.3908 (3)0.7554 (3)1.01939 (14)0.0809 (7)
H40.42960.74971.07770.097*
C50.3767 (2)0.6566 (2)0.96771 (14)0.0710 (6)
H50.40480.58430.99160.085*
C60.3209 (2)0.66398 (16)0.88051 (12)0.0528 (4)
H60.31130.59750.84540.063*
C70.49240 (18)0.89465 (14)0.69898 (10)0.0410 (4)
H70.43090.95300.73040.049*
C80.6390 (2)0.86509 (15)0.75812 (11)0.0507 (4)
H8A0.60550.83300.81360.061*
H8B0.70260.80650.72960.061*
C90.7397 (2)0.97408 (17)0.77604 (11)0.0579 (5)
H9A0.67861.03030.80850.069*
H9B0.83400.95360.81210.069*
C100.7892 (2)1.02824 (16)0.69050 (12)0.0547 (5)
H10A0.85780.97440.66050.066*
H10B0.84951.09900.70330.066*
C110.6449 (2)1.05710 (15)0.63070 (12)0.0550 (4)
H11A0.68031.08710.57500.066*
H11B0.58281.11770.65800.066*
C120.53986 (19)0.95047 (14)0.61323 (10)0.0457 (4)
H12A0.44460.97350.57890.055*
H12B0.59710.89390.57900.055*
C130.4471 (2)0.68754 (15)0.63861 (12)0.0542 (5)
H13A0.41810.61950.67260.065*
H13B0.56270.69160.63960.065*
C140.3849 (3)0.67214 (18)0.54449 (13)0.0760 (6)
H14A0.27040.66770.54290.114*
H14B0.42730.60140.52080.114*
H14C0.41720.73740.50980.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0385 (2)0.0606 (3)0.0500 (3)0.0046 (2)0.00434 (17)0.0147 (2)
O10.0615 (8)0.0877 (10)0.0603 (8)0.0332 (7)0.0110 (6)0.0087 (7)
O20.0469 (7)0.0815 (10)0.0880 (10)0.0182 (7)0.0050 (7)0.0353 (8)
N10.0459 (8)0.0483 (8)0.0421 (7)0.0072 (6)0.0015 (6)0.0003 (6)
C10.0378 (8)0.0476 (9)0.0431 (9)0.0015 (7)0.0050 (7)0.0043 (7)
C20.0839 (14)0.0548 (12)0.0599 (12)0.0012 (10)0.0160 (10)0.0002 (9)
C30.1083 (19)0.0908 (18)0.0541 (13)0.0248 (15)0.0138 (12)0.0155 (12)
C40.0689 (14)0.131 (2)0.0427 (11)0.0152 (14)0.0031 (10)0.0049 (13)
C50.0665 (13)0.0872 (16)0.0594 (12)0.0133 (12)0.0045 (10)0.0285 (12)
C60.0543 (10)0.0529 (11)0.0513 (10)0.0005 (9)0.0064 (8)0.0090 (8)
C70.0408 (8)0.0433 (9)0.0387 (8)0.0020 (7)0.0010 (6)0.0009 (7)
C80.0509 (10)0.0581 (11)0.0422 (9)0.0051 (8)0.0066 (7)0.0079 (8)
C90.0556 (11)0.0678 (13)0.0494 (10)0.0100 (9)0.0087 (8)0.0030 (9)
C100.0516 (10)0.0528 (11)0.0599 (11)0.0123 (8)0.0033 (8)0.0052 (8)
C110.0592 (11)0.0480 (10)0.0580 (11)0.0046 (8)0.0052 (9)0.0101 (8)
C120.0456 (9)0.0512 (10)0.0399 (9)0.0009 (8)0.0014 (7)0.0087 (7)
C130.0606 (11)0.0449 (10)0.0567 (11)0.0022 (8)0.0024 (9)0.0017 (8)
C140.1067 (18)0.0615 (13)0.0591 (12)0.0003 (12)0.0042 (12)0.0115 (10)
Geometric parameters (Å, º) top
S1—O21.4247 (13)C8—C91.524 (2)
S1—O11.4309 (14)C8—H8A0.9700
S1—N11.6093 (14)C8—H8B0.9700
S1—C11.7632 (16)C9—C101.511 (2)
N1—C131.476 (2)C9—H9A0.9700
N1—C71.485 (2)C9—H9B0.9700
C1—C21.378 (2)C10—C111.515 (2)
C1—C61.381 (2)C10—H10A0.9700
C2—C31.368 (3)C10—H10B0.9700
C2—H20.9300C11—C121.521 (2)
C3—C41.359 (3)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.377 (3)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.384 (3)C13—C141.507 (3)
C5—H50.9300C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C7—C121.516 (2)C14—H14A0.9600
C7—C81.527 (2)C14—H14B0.9600
C7—H70.9800C14—H14C0.9600
O2—S1—O1119.34 (9)H8A—C8—H8B108.1
O2—S1—N1108.08 (8)C10—C9—C8110.74 (14)
O1—S1—N1107.08 (8)C10—C9—H9A109.5
O2—S1—C1106.77 (9)C8—C9—H9A109.5
O1—S1—C1108.29 (8)C10—C9—H9B109.5
N1—S1—C1106.64 (7)C8—C9—H9B109.5
C13—N1—C7119.89 (13)H9A—C9—H9B108.1
C13—N1—S1119.71 (11)C9—C10—C11111.09 (15)
C7—N1—S1117.98 (11)C9—C10—H10A109.4
C2—C1—C6120.85 (16)C11—C10—H10A109.4
C2—C1—S1119.81 (14)C9—C10—H10B109.4
C6—C1—S1119.21 (13)C11—C10—H10B109.4
C3—C2—C1119.6 (2)H10A—C10—H10B108.0
C3—C2—H2120.2C10—C11—C12111.69 (14)
C1—C2—H2120.2C10—C11—H11A109.3
C4—C3—C2120.6 (2)C12—C11—H11A109.3
C4—C3—H3119.7C10—C11—H11B109.3
C2—C3—H3119.7C12—C11—H11B109.3
C3—C4—C5120.01 (19)H11A—C11—H11B107.9
C3—C4—H4120.0C7—C12—C11111.15 (13)
C5—C4—H4120.0C7—C12—H12A109.4
C4—C5—C6120.6 (2)C11—C12—H12A109.4
C4—C5—H5119.7C7—C12—H12B109.4
C6—C5—H5119.7C11—C12—H12B109.4
C1—C6—C5118.32 (18)H12A—C12—H12B108.0
C1—C6—H6120.8N1—C13—C14113.41 (15)
C5—C6—H6120.8N1—C13—H13A108.9
N1—C7—C12110.79 (12)C14—C13—H13A108.9
N1—C7—C8113.40 (13)N1—C13—H13B108.9
C12—C7—C8111.16 (13)C14—C13—H13B108.9
N1—C7—H7107.0H13A—C13—H13B107.7
C12—C7—H7107.0C13—C14—H14A109.5
C8—C7—H7107.0C13—C14—H14B109.5
C9—C8—C7110.38 (14)H14A—C14—H14B109.5
C9—C8—H8A109.6C13—C14—H14C109.5
C7—C8—H8A109.6H14A—C14—H14C109.5
C9—C8—H8B109.6H14B—C14—H14C109.5
C7—C8—H8B109.6
O2—S1—N1—C13146.72 (13)C2—C1—C6—C50.6 (3)
O1—S1—N1—C1316.96 (14)S1—C1—C6—C5175.29 (14)
C1—S1—N1—C1398.80 (13)C4—C5—C6—C10.1 (3)
O2—S1—N1—C750.94 (13)C13—N1—C7—C1266.92 (17)
O1—S1—N1—C7179.30 (11)S1—N1—C7—C12130.77 (12)
C1—S1—N1—C763.54 (13)C13—N1—C7—C858.89 (19)
O2—S1—C1—C221.71 (17)S1—N1—C7—C8103.43 (15)
O1—S1—C1—C2151.40 (15)N1—C7—C8—C9177.88 (13)
N1—S1—C1—C293.66 (16)C12—C7—C8—C956.52 (19)
O2—S1—C1—C6162.38 (13)C7—C8—C9—C1057.4 (2)
O1—S1—C1—C632.69 (16)C8—C9—C10—C1156.9 (2)
N1—S1—C1—C682.25 (15)C9—C10—C11—C1255.4 (2)
C6—C1—C2—C30.6 (3)N1—C7—C12—C11178.00 (13)
S1—C1—C2—C3175.27 (16)C8—C7—C12—C1154.96 (19)
C1—C2—C3—C40.1 (3)C10—C11—C12—C754.4 (2)
C2—C3—C4—C50.7 (4)C7—N1—C13—C14107.93 (18)
C3—C4—C5—C60.7 (3)S1—N1—C13—C1490.06 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.583.482 (2)163
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H21NO2S
Mr267.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.3837 (4), 11.4467 (5), 15.1488 (7)
β (°) 92.541 (2)
V3)1452.34 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.41 × 0.28 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.916, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
15910, 3651, 2481
Rint0.034
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.02
No. of reflections3651
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia,1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.93002.58003.482 (2)163.00
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerredjem, M., Ré gainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249–264.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConnor, E. E. (1998). Prim. Care Update Ob. Gyn. 5, 32–35.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem.37, 773–777.  Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds