organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6,6'-Di-*tert*-butyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol

Naser Eltaher Eltayeb,^a‡ Siang Guan Teoh,^a Chin Sing Yeap,^b§ Hoong-Kun Fun^b*¶ and Rohana Adnan^a

^aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 12 November 2009; accepted 17 November 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.059; wR factor = 0.206; data-to-parameter ratio = 13.2.

The molecule of the title Schiff base compound, $C_{28}H_{32}N_2O_2$, has a twisted geometry, the dihedral angles between the central benzene ring and the other two benzene rings being 29.12 (14) and 26.01 (14)°. Four intramolecular $C-H\cdots O$ hydrogen bonds and two intramolecular $O-H\cdots N$ hydrogen bonds stabilize the molecular structure. In the crystal packing, molecules are stacked along the *a* axis and stabilized by $\pi-\pi$ interactions [centroid–centroid distance = 3.6724 (17) Å]. The crystal studied was found to be a non-merohedral twin, the refined ratio of twin components being 0.374 (5):0.626 (5).

Related literature

For biological applications of Schiff base derivatives, see: Dao *et al.* (2000); Eltayeb & Ahmed (2005a,b); Karthikeyan *et al.* (2006); Sriram *et al.* (2006). For related structures, see: Eltayeb *et al.* (2007a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

‡ Current address: Department of Chemistry, International University of Africa, Khartoum, Sudan. E-mail: nasertaha90@hotmail.com.

§ Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Experimental

Crystal data

 $\begin{array}{l} C_{28}H_{32}N_2O_2\\ M_r = 428.56\\ \text{Triclinic, }P\overline{1}\\ a = 6.8312 \ (9) \ \text{\AA}\\ b = 13.9632 \ (16) \ \text{\AA}\\ c = 14.0689 \ (15) \ \text{\AA}\\ \alpha = 116.615 \ (5)^\circ\\ \beta = 99.068 \ (4)^\circ \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.936, T_{\rm max} = 0.996$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.206$ S = 1.194021 reflections 304 parameters V = 1149.6 (2) Å³ Z = 2Mo K α radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 100 K $0.87 \times 0.20 \times 0.05 \text{ mm}$

 $\gamma = 98.209 \ (4)^{\circ}$

4021 measured reflections 4021 independent reflections 3241 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H1 <i>O</i> 2···N2	0.91 (5)	1.73 (4)	2.584 (3)	156 (4)
O1−H1 <i>O</i> 1···N1	0.91 (5)	1.77 (6)	2.609 (3)	151 (5)
$C22 - H22A \cdots O1$	0.96	2.34	2.993 (3)	125
$C23 - H23A \cdots O1$	0.96	2.34	2.987 (4)	124
$C26-H26B\cdots O2$	0.96	2.31	2.963 (4)	125
C27−H27C···O2	0.96	2.37	3.011 (4)	124

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Malaysian Government, the Ministry of Higher Education, (MOHE) and Universiti Sains Malaysia (USM) for the FRGS and RU research grants (PKIMIA/ 815002 and PKIMIA/811120). The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. HKF and CSY thank USM for the Research University Golden Goose grant (1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2954).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

- Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). *Eur. J. Med. Chem.* **35**, 805–813.
- Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol. 6, 51-59.
- Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.
- Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, 0695–0696.
- Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, 0766–0767.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). *Bioorg. Med. Chem.* 14, 7482–7489.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.

supporting information

Acta Cryst. (2009). E65, o3142-o3143 [doi:10.1107/S1600536809048922]

6,6'-Di-tert-butyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol

Naser Eltaher Eltayeb, Siang Guan Teoh, Chin Sing Yeap, Hoong-Kun Fun and Rohana Adnan

S1. Comment

Schiff bases have received much attention because of their potential applications with some of these compounds exhibiting various pharmacological activities, as noted by their anticancer (Dao *et al.*, 2000), anti-HIV (Sriram *et al.*, 2006), antibacterial and antifungal (Karthikeyan *et al.*, 2006) properties. In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005*a*,b). Previously, we have reported the crystal structures of 2,2'-[1,2-phenylenebis(nitrilomethylidyne)]bis(5-methylphenol) (Eltayeb *et al.*, 2007*a*) and 6,6'-dimethyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol (Eltayeb *et al.*, 2007*b*). In this paper, we report the crystal structure of the title compound, obtained by the reaction of *o*-phenylenediamine and 3-*tert*-butyl-2-hydroxybenzaldehyde.

The title compound (Fig. 1) has a slightly twisted geometry with the dihedral angles between the two benzene rings (C1–C6 and C15–C20) with the central benzene ring (C8–C13) being 29.12 (14) and 26.01 (14)°. The geometrical parameters are comparable to previously reported structures (Eltayeb *et al.*, 2007*a*,b). Two bifurcated intramolecular C—H···O hydrogen bonds and two intramolecular O—H···N hydrogen bonds stabilized the molecular structure (Fig. 1, Table 1). In the crystal packing (Fig. 2), the molecules are stacked along the *a* axis and stabilized by Cg1···Cg1 = 3.6724 (17) Å interactions [Cg1 is the centroid of C1–C6 phenyl ring; 1 - *x*, -*y*, 1 - *z*].

S2. Experimental

To a solution of *o*-phenylenediamine (0.216 g, 2 mmol) in ethanol (20 ml) was added 3-*tert*-butyl-2-hydroxybenzaldehyde (0.7 ml, 4 mmol). The mixture was refluxed with stirring for 30 min. The resultant orange solution was filtered. Yellow precipitate obtained was dissolved in acetone. Yellow crystals suitable for XRD formed after a few days of slow evaporation of the solvent at room temperature.

S3. Refinement

O-bound H atoms were located in a difference Fourier map and refined freely. The rest of the H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 or 0.96 Å and $U_{iso}(H) = 1.2-1.5(methyl)U_{eq}(C)$. The rotating group model was applied for the methyl groups. The crystal studied was a non-merohedral twin with a refined BASF of 0.374 (5).

Figure 1

The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.

Figure 2

The crystal packing of the title compound, viewed along the *a* axis, showing how the molecules are stacked along the *a* axis.

6,6'-Di-tert-butyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol

Crystal data

$C_{28}H_{32}N_2O_2$	Z = 2
$M_r = 428.56$	F(000) = 460
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.238 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.8312 (9) Å	Cell parameters from 4325 reflections
b = 13.9632 (16) Å	$\theta = 2.9 - 29.9^{\circ}$
c = 14.0689 (15) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 116.615 (5)^{\circ}$	T = 100 K
$\beta = 99.068 \ (4)^{\circ}$	Plate, yellow
$\gamma = 98.209 \ (4)^{\circ}$	$0.87 \times 0.20 \times 0.05 \text{ mm}$
V = 1149.6 (2) Å ³	
Data collection	
Bruker SMART APEXII CCD area-detector	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 2005)
Radiation source: fine-focus sealed tube	$T_{\rm min} = 0.936, T_{\rm max} = 0.996$
Graphite monochromator	4021 measured reflections
φ and ω scans	4021 independent reflections
	3241 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.000$	$k = -16 \rightarrow 14$
$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.7^{\circ}$	$l = -4 \rightarrow 16$
$h = -8 \rightarrow 7$	

Kejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.206$	neighbouring sites
S = 1.19	H atoms treated by a mixture of independent
4021 reflections	and constrained refinement
304 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0995P)^2 + 0.5885P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.32$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.2350 (3)	0.09518 (15)	0.37885 (15)	0.0209 (5)	
O2	-0.1083 (3)	0.11123 (16)	0.22061 (15)	0.0231 (5)	
N1	0.0669 (3)	-0.11626 (17)	0.27055 (17)	0.0176 (5)	
N2	-0.1856 (3)	-0.10123 (17)	0.10607 (18)	0.0177 (5)	
C1	0.2757 (4)	0.0859 (2)	0.4710 (2)	0.0173 (6)	
C2	0.3650 (4)	0.1817 (2)	0.5735 (2)	0.0180 (6)	
C3	0.4083 (4)	0.1661 (2)	0.6647 (2)	0.0205 (6)	
H3A	0.4711	0.2275	0.7327	0.025*	
C4	0.3624 (4)	0.0631 (2)	0.6593 (2)	0.0213 (6)	
H4A	0.3953	0.0565	0.7225	0.026*	
C5	0.2682 (4)	-0.0287 (2)	0.5601 (2)	0.0185 (6)	
H5A	0.2332	-0.0975	0.5562	0.022*	
C6	0.2250 (4)	-0.0188 (2)	0.4652 (2)	0.0166 (6)	
C7	0.1138 (4)	-0.1159 (2)	0.3629 (2)	0.0178 (6)	
H7A	0.0740	-0.1818	0.3641	0.021*	
C8	-0.0515 (4)	-0.2150 (2)	0.1771 (2)	0.0164 (6)	
C9	-0.0387 (4)	-0.3197 (2)	0.1618 (2)	0.0209 (6)	
H9A	0.0541	-0.3258	0.2136	0.025*	
C10	-0.1613 (5)	-0.4144 (2)	0.0713 (2)	0.0246 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H10A	-0.1506	-0.4834	0.0624	0.029*
C11	-0.3008 (5)	-0.4060 (2)	-0.0064 (2)	0.0239 (7)
H11A	-0.3866	-0.4694	-0.0663	0.029*
C12	-0.3115 (4)	-0.3039 (2)	0.0056 (2)	0.0211 (6)
H12A	-0.4059	-0.2991	-0.0465	0.025*
C13	-0.1838 (4)	-0.2070 (2)	0.0942 (2)	0.0174 (6)
C14	-0.2331 (4)	-0.0902 (2)	0.0202 (2)	0.0191 (6)
H14A	-0.2692	-0.1530	-0.0484	0.023*
C15	-0.2329 (4)	0.0154 (2)	0.0251 (2)	0.0181 (6)
C16	-0.2928 (4)	0.0202 (2)	-0.0721 (2)	0.0218 (6)
H16A	-0.3379	-0.0447	-0.1389	0.026*
C17	-0.2855 (4)	0.1196 (2)	-0.0698 (2)	0.0232 (6)
H17A	-0.3291	0.1223	-0.1344	0.028*
C18	-0.2127 (4)	0.2166 (2)	0.0297 (2)	0.0222 (6)
H18A	-0.2052	0.2835	0.0296	0.027*
C19	-0.1506 (4)	0.2182 (2)	0.1293 (2)	0.0202 (6)
C20	-0.1651 (4)	0.1147 (2)	0.1261 (2)	0.0187 (6)
C21	0.4042 (4)	0.2968 (2)	0.5821 (2)	0.0218 (6)
C22	0.2009 (4)	0.3178 (2)	0.5415 (2)	0.0241 (6)
H22A	0.1358	0.2601	0.4681	0.036*
H22B	0.2262	0.3876	0.5421	0.036*
H22C	0.1134	0.3191	0.5890	0.036*
C23	0.5547 (5)	0.3065 (2)	0.5150(2)	0.0265 (7)
H23A	0.5013	0.2504	0.4397	0.040*
H23B	0.6834	0.2972	0.5439	0.040*
H23C	0.5739	0.3779	0.5194	0.040*
C24	0.4951 (5)	0.3884 (2)	0.7013 (2)	0.0271 (7)
H24A	0.6252	0.3795	0.7290	0.041*
H24B	0.4044	0.3838	0.7456	0.041*
H24C	0.5125	0.4591	0.7040	0.041*
C25	-0.0608(5)	0.3263 (2)	0.2379 (2)	0.0237 (7)
C26	-0.1878 (5)	0.3344 (2)	0.3208 (3)	0.0306 (7)
H26A	-0.1278	0.4014	0.3887	0.046*
H26B	-0.1901	0.2723	0.3336	0.046*
H26C	-0.3248	0.3346	0.2921	0.046*
C27	0.1622 (5)	0.3313 (2)	0.2836 (2)	0.0263 (7)
H27A	0.2176	0.3976	0.3526	0.039*
H27B	0.2406	0.3311	0.2326	0.039*
H27C	0.1676	0.2683	0.2941	0.039*
C28	-0.0596(5)	0.4277 (2)	0.2213 (3)	0.0299 (7)
H28A	-0.0024	0.4936	0.2905	0.045*
H28B	-0.1970	0.4272	0.1922	0.045*
H28C	0.0213	0.4258	0.1708	0.045*
H1O2	-0.127 (6)	0.038 (3)	0.199 (3)	0.049 (11)*
H101	0.174 (7)	0.026 (4)	0.322 (4)	0.064 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0261 (11)	0.0191 (10)	0.0153 (9)	0.0031 (8)	0.0029 (8)	0.0079 (8)
O2	0.0313 (12)	0.0210 (10)	0.0194 (10)	0.0070 (9)	0.0042 (9)	0.0120 (8)
N1	0.0133 (12)	0.0176 (11)	0.0192 (12)	0.0036 (9)	0.0042 (9)	0.0066 (9)
N2	0.0142 (12)	0.0192 (11)	0.0206 (12)	0.0052 (9)	0.0042 (9)	0.0100 (9)
C1	0.0108 (13)	0.0255 (14)	0.0159 (13)	0.0061 (11)	0.0040 (10)	0.0095 (11)
C2	0.0105 (13)	0.0226 (14)	0.0186 (13)	0.0040 (11)	0.0057 (11)	0.0073 (11)
C3	0.0140 (14)	0.0250 (14)	0.0155 (13)	0.0033 (11)	0.0043 (11)	0.0040 (11)
C4	0.0170 (14)	0.0312 (15)	0.0175 (13)	0.0082 (12)	0.0051 (11)	0.0124 (12)
C5	0.0129 (14)	0.0247 (14)	0.0210 (14)	0.0081 (11)	0.0061 (11)	0.0120 (12)
C6	0.0088 (13)	0.0213 (13)	0.0201 (13)	0.0059 (10)	0.0053 (11)	0.0091 (11)
C7	0.0149 (14)	0.0201 (13)	0.0200 (14)	0.0065 (11)	0.0060 (11)	0.0098 (11)
C8	0.0130 (13)	0.0161 (13)	0.0179 (13)	0.0022 (10)	0.0063 (11)	0.0059 (11)
C9	0.0230 (15)	0.0227 (14)	0.0197 (14)	0.0091 (12)	0.0070 (12)	0.0110 (12)
C10	0.0336 (17)	0.0151 (13)	0.0249 (15)	0.0064 (12)	0.0109 (13)	0.0083 (12)
C11	0.0262 (16)	0.0192 (14)	0.0178 (14)	-0.0017 (12)	0.0055 (12)	0.0038 (11)
C12	0.0182 (14)	0.0250 (14)	0.0179 (13)	0.0028 (11)	0.0039 (11)	0.0094 (11)
C13	0.0136 (13)	0.0196 (13)	0.0185 (13)	0.0037 (11)	0.0073 (11)	0.0078 (11)
C14	0.0119 (13)	0.0232 (14)	0.0187 (13)	0.0024 (11)	0.0033 (11)	0.0079 (11)
C15	0.0096 (13)	0.0277 (14)	0.0202 (13)	0.0060 (11)	0.0044 (11)	0.0135 (12)
C16	0.0131 (14)	0.0320 (15)	0.0196 (14)	0.0044 (12)	0.0051 (11)	0.0117 (12)
C17	0.0135 (14)	0.0402 (16)	0.0265 (15)	0.0080 (12)	0.0063 (12)	0.0239 (13)
C18	0.0181 (14)	0.0298 (15)	0.0296 (15)	0.0107 (12)	0.0102 (12)	0.0206 (13)
C19	0.0142 (14)	0.0263 (14)	0.0264 (15)	0.0085 (11)	0.0091 (11)	0.0155 (12)
C20	0.0142 (14)	0.0270 (14)	0.0204 (14)	0.0077 (11)	0.0066 (11)	0.0146 (12)
C21	0.0194 (15)	0.0212 (14)	0.0217 (14)	0.0041 (11)	0.0068 (12)	0.0075 (12)
C22	0.0253 (16)	0.0233 (14)	0.0261 (15)	0.0075 (12)	0.0067 (13)	0.0133 (12)
C23	0.0259 (16)	0.0224 (14)	0.0274 (15)	0.0021 (12)	0.0087 (13)	0.0092 (12)
C24	0.0244 (16)	0.0227 (15)	0.0251 (15)	0.0022 (12)	0.0055 (13)	0.0052 (12)
C25	0.0277 (17)	0.0226 (14)	0.0257 (15)	0.0091 (12)	0.0104 (13)	0.0137 (12)
C26	0.0370 (19)	0.0291 (16)	0.0318 (16)	0.0139 (14)	0.0166 (15)	0.0156 (14)
C27	0.0267 (16)	0.0241 (14)	0.0245 (15)	0.0036 (12)	0.0049 (13)	0.0100 (12)
C28	0.0356 (18)	0.0275 (15)	0.0342 (17)	0.0111 (14)	0.0140 (14)	0.0185 (14)

Geometric parameters (Å, °)

01—C1	1.349 (3)	C15—C20	1.413 (4)	
01—H101	0.91 (4)	C16—C17	1.368 (4)	
O2—C20	1.350 (3)	C16—H16A	0.9300	
O2—H1O2	0.91 (4)	C17—C18	1.389 (4)	
N1—C7	1.286 (3)	C17—H17A	0.9300	
N1—C8	1.416 (3)	C18—C19	1.387 (4)	
N2-C14	1.284 (3)	C18—H18A	0.9300	
N2—C13	1.412 (3)	C19—C20	1.414 (4)	
C1—C2	1.415 (4)	C19—C25	1.538 (4)	
C1—C6	1.416 (4)	C21—C23	1.531 (4)	

C2—C3	1.389 (4)	C21—C24	1.536 (4)
C2—C21	1.537 (4)	C21—C22	1.536 (4)
C3—C4	1.393 (4)	C22—H22A	0.9600
С3—НЗА	0.9300	C22—H22B	0.9600
C4—C5	1.372 (4)	C22—H22C	0.9600
C4—H4A	0.9300	С23—Н23А	0.9600
C5—C6	1.395 (4)	С23—Н23В	0.9600
C5—H5A	0.9300	С23—Н23С	0.9600
C6—C7	1,449 (4)	C24—H24A	0.9600
C7—H7A	0.9300	C24—H24B	0.9600
C8—C9	1.397 (4)	C24—H24C	0.9600
C8-C13	1 416 (4)	$C_{25} - C_{28}$	1 534 (4)
C9—C10	1 383 (4)	$C_{25} = C_{26}$	1 535 (4)
C9—H9A	0.9300	$C_{25} = C_{27}$	1.536 (4)
C10—C11	1 391 (4)	C26—H26A	0.9600
C10—H10A	0.9300	C26—H26B	0.9600
C_{11} C_{12}	1373(4)	C_{26} H26C	0.9600
C11—H11A	0.9300	C27_H27A	0.9600
C12-C13	1 398 (4)	C27_H27B	0.9600
C12 H12A	0.0300	$C_{27} = H_{27}C$	0.9000
C12 - C12	1.445(4)	C_{28} H284	0.9600
C14 $H14A$	0.9300	C28_H28B	0.9600
C_{14} C_{15} C_{16}	1 300 (1)	C28 H28C	0.9000
015-010	1.399 (4)	0.20-11200	0.9000
C1—O1—H1O1	107 (3)	C19—C18—H18A	118.5
C20—O2—H1O2	104 (2)	C17—C18—H18A	118.5
C7—N1—C8	118.6 (2)	C18—C19—C20	116.7 (2)
C14—N2—C13	119.5 (2)	C18—C19—C25	122.3 (2)
O1—C1—C2	119.7 (2)	C20—C19—C25	120.9 (2)
O1—C1—C6	120.1 (2)	O2—C20—C15	119.8 (2)
C2—C1—C6	120.3 (2)	O2—C20—C19	119.3 (2)
C3—C2—C1	116.8 (2)	C15—C20—C19	120.9 (2)
C3—C2—C21	122.5 (2)	C23—C21—C24	107.6 (2)
C1—C2—C21	120.7 (2)	C23—C21—C22	110.5 (2)
C2—C3—C4	123.2 (2)	C24—C21—C22	106.9 (2)
С2—С3—Н3А	118.4	C23—C21—C2	110.6 (2)
С4—С3—НЗА	118.4	C24—C21—C2	111.7 (2)
C5—C4—C3	119.5 (3)	C22—C21—C2	109.4 (2)
C5—C4—H4A	120.2	C21—C22—H22A	109.5
C3—C4—H4A	120.2	C21—C22—H22B	109.5
C4—C5—C6	119.9 (2)	H22A—C22—H22B	109.5
C4—C5—H5A	120.1	$C_{21} - C_{22} - H_{22}C_{22}$	109.5
C6—C5—H5A	120.0	H22A - C22 - H22C	109.5
C5—C6—C1	120.2 (2)	H22B— $C22$ — $H22C$	109.5
C_{5}	1186(2)	C_{21} C_{23} H_{23A}	109.5
C1 - C6 - C7	121 0 (2)	$C_{21} = C_{23} = H_{23R}$	109.5
N1 - C7 - C6	123.8 (2)	H23A-C23-H23B	109.5
N1—C7—H7A	118.1	$C_{21} - C_{23} - H_{23}C$	109.5

С6—С7—Н7А	118.1	H23A—C23—H23C	109.5
C9—C8—C13	118.7 (2)	H23B—C23—H23C	109.5
C9—C8—N1	122.9 (2)	C21—C24—H24A	109.5
C13—C8—N1	118.4 (2)	C21—C24—H24B	109.5
C10—C9—C8	121.3 (3)	H24A—C24—H24B	109.5
С10—С9—Н9А	119.4	C21—C24—H24C	109.5
С8—С9—Н9А	119.4	H24A—C24—H24C	109.5
C9—C10—C11	119.7 (2)	H24B—C24—H24C	109.5
С9—С10—Н10А	120.1	C28—C25—C26	107.5 (2)
C11—C10—H10A	120.1	C28—C25—C27	107.1 (2)
C12—C11—C10	119.8 (3)	C26—C25—C27	110.9 (2)
C12—C11—H11A	120.1	C28—C25—C19	111.6 (2)
C10-C11-H11A	120.1	C26—C25—C19	110.5 (2)
C11—C12—C13	121.6 (3)	C27—C25—C19	109.2 (2)
C11—C12—H12A	119.2	C25—C26—H26A	109.5
C13—C12—H12A	119.2	С25—С26—Н26В	109.5
C12—C13—N2	122.8 (2)	H26A—C26—H26B	109.5
C12—C13—C8	118.6 (2)	С25—С26—Н26С	109.5
N2—C13—C8	118.6 (2)	H26A—C26—H26C	109.5
N2—C14—C15	122.9 (2)	H26B—C26—H26C	109.5
N2—C14—H14A	118.5	С25—С27—Н27А	109.5
C15—C14—H14A	118.5	С25—С27—Н27В	109.5
C16—C15—C20	119.2 (2)	H27A—C27—H27B	109.5
C16—C15—C14	119.5 (2)	С25—С27—Н27С	109.5
C20—C15—C14	121.3 (2)	Н27А—С27—Н27С	109.5
C17—C16—C15	120.5 (3)	H27B—C27—H27C	109.5
C17—C16—H16A	119.8	C25—C28—H28A	109.5
C15—C16—H16A	119.8	C25—C28—H28B	109.5
C16—C17—C18	119.6 (3)	H28A—C28—H28B	109.5
С16—С17—Н17А	120.2	C25—C28—H28C	109.5
C18—C17—H17A	120.2	H28A—C28—H28C	109.5
C19—C18—C17	123.1 (3)	H28B—C28—H28C	109.5
O1—C1—C2—C3	-178.2 (2)	N1—C8—C13—N2	2.6 (4)
C6—C1—C2—C3	3.2 (4)	C13—N2—C14—C15	-178.2 (2)
O1—C1—C2—C21	3.7 (4)	N2-C14-C15-C16	-178.0 (3)
C6—C1—C2—C21	-174.9 (2)	N2—C14—C15—C20	4.8 (4)
C1—C2—C3—C4	-2.1 (4)	C20-C15-C16-C17	0.1 (4)
C21—C2—C3—C4	176.0 (2)	C14—C15—C16—C17	-177.2 (2)
C2—C3—C4—C5	-0.5 (4)	C15—C16—C17—C18	1.8 (4)
C3—C4—C5—C6	2.0 (4)	C16—C17—C18—C19	-1.8 (4)
C4—C5—C6—C1	-0.8 (4)	C17—C18—C19—C20	-0.2 (4)
C4—C5—C6—C7	-176.1 (2)	C17—C18—C19—C25	177.0 (3)
O1—C1—C6—C5	179.5 (2)	C16—C15—C20—O2	179.5 (2)
C2-C1-C6-C5	-1.9 (4)	C14—C15—C20—O2	-3.2 (4)
O1—C1—C6—C7	-5.3 (4)	C16—C15—C20—C19	-2.2 (4)
C2—C1—C6—C7	173.3 (2)	C14—C15—C20—C19	175.1 (2)
C8—N1—C7—C6	-176.7 (2)	C18—C19—C20—O2	-179.5 (2)

$C5-C6-C7-N1\\C1-C6-C7-N1\\C7-N1-C8-C9\\C7-N1-C8-C13\\C13-C8-C9-C10\\N1-C8-C9-C10\\C8-C9-C10-C11\\C9-C10-C11-C12\\C10-C11-C12-C13\\C11-C12-C13-N2\\C11-C12-C13-N2\\C11-C12-C13-C8\\C14-N2-C13-C12\\C14-N2-C13-C8\\C9-C8-C13-C12\\C14-N2-C12-C12\\C14-N2-C13-C12\\C14-N$	-179.6 (3) 5.2 (4) -32.3 (4) 149.7 (2) -4.1 (4) 177.9 (2) -0.1 (4) 2.0 (4) 0.5 (4) 177.3 (2) -4.7 (4) -29.9 (4) 152.0 (3) 6.4 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.2 (4) \\ 2.2 (4) \\ -175.1 (2) \\ 120.0 (3) \\ -62.0 (3) \\ 0.1 (4) \\ 178.1 (2) \\ -118.1 (3) \\ 59.9 (3) \\ 2.6 (4) \\ 179.7 (2) \\ 122.2 (3) \\ -60.7 (3) \\ -115.6 (3) \end{array}$
C9—C8—C13—C12 N1—C8—C13—C12 C9—C8—C13—N2	6.4 (4) -175.6 (2) -175.5 (2)	C18—C19—C25—C27 C20—C19—C25—C27	-115.6 (3) 61.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O2—H1 <i>O</i> 2····N2	0.91 (5)	1.73 (4)	2.584 (3)	156 (4)
01—H1 <i>0</i> 1…N1	0.91 (5)	1.77 (6)	2.609 (3)	151 (5)
C22—H22A…O1	0.96	2.34	2.993 (3)	125
C23—H23A…O1	0.96	2.34	2.987 (4)	124
C26—H26 <i>B</i> ···O2	0.96	2.31	2.963 (4)	125
С27—Н27С…О2	0.96	2.37	3.011 (4)	124