

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[(2,2':6',2"-terpyridine- $\kappa^3 N, N', N''$)zinc(II)]- μ -2,2'-oxydi-benzoato- $\kappa^2 O:O'$]

Hai-Yan Gong,* Yan Bai and Wei Liu

The Center of Analysis and Determination, Henan University of Traditional Chinese Medicine, No. 1 Jinshui Road, Zhengzhou 450008, Henan, People's Republic of China

Correspondence e-mail: haiyangong@yeah.net

Received 20 October 2009; accepted 11 November 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.098; data-to-parameter ratio = 16.8.

In the title compound, $[Zn(C_{14}H_8O_5)(C_{15}H_{11}N_3)]_n$, both the Zn^{II} ion and the oxydibenzoate ligand are located on a twofold rotation axis. The Zn^{II} centre is coordinated by three N atoms from a chelating 2,2':6',2''-terpyridine ligand and two O atoms from two 2,2'-oxydibenzoate ligands, forming a distorted trigonal-bipyramidal coordination environment. Further coordination *via* the 2,2'-oxydibenzoate anions forms a one-dimensional coordination polymer extending parallel to [010]. Aromatic π - π stacking interactions are observed between adjacent terpyridine ligands with a centroid–centroid distance of 3.568 (2) Å.

Related literature

For related structures, see: Zhao & Li (2009); Andres & Schubert (2004); Constable (1986); Hofmeier & Schubert (2004).

Experimental

Crystal data

 $\begin{bmatrix} Zn(C_{14}H_8O_5)(C_{15}H_{11}N_3) \end{bmatrix} \\ M_r = 554.84 \\ \text{Orthorhombic, } Pccn \\ a = 8.7985 (17) \text{ Å} \\ b = 10.694 (2) \text{ Å} \\ c = 25.535 (5) \text{ Å} \end{bmatrix}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{min} = 0.815, T_{max} = 0.847$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.098$ S = 1.082924 reflections $V = 2402.6 \text{ (8) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.07 \text{ mm}^{-1}$ T = 296 K $0.20 \times 0.18 \times 0.16 \text{ mm}$

15388 measured reflections 2924 independent reflections 2347 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$

174 parameters H-atom parameters constrained $\Delta\rho_{max}=0.39$ e Å^{-3} $\Delta\rho_{min}=-0.31$ e Å^{-3}

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2011).

References

Andres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043-1068.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Constable, E. C. (1986). Adv. Inorg. Chem. Radiochem. 30, 69-121.
- Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373-399.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhao, Q.-L. & Li, G.-P. (2009). Acta Cryst. E65, m693.

supporting information

Acta Cryst. (2009). E65, m1589 [doi:10.1107/S1600536809047679]

catena-Poly[[(2,2':6',2''-terpyridine- $\kappa^3 N, N', N''$)zinc(II)]- μ -2,2'-oxydibenzoato- $\kappa^2 O:O'$]

Hai-Yan Gong, Yan Bai and Wei Liu

S1. Comment

2,2':6',2"-Terpyridine and its derivatives have been intensively explored because of the interesting electronic, photonic, magnetic, reactive and structural properties shown by the transition metal complexes of these ligands (Andres & Schubert, 2004; Constable, 1986; Hofmeier & Schubert, 2004). We report here the synthesis and structure of the Zn^{II} complex based on the 2,2':6',2"-terpyridine ligand.

In the crystal structure of the title compound, the Zn atoms are coordinated by three N atoms from a chelating terpy ligand and two O atoms from two 2,2'-oxydibenzoate ligands, forming a distorted trigonal bipyramidal coordination environment (Figure 1). The Zinc atoms are linked by the 2,2-oxydibenzoate anions into a one-dimensional coordination polymer.

Aromatic stacking interactions between Cg1 and Cg2 [Cg1 and Cg2 are (N2, C8 – C12) and (N2ⁱ, C8ⁱ – C12ⁱ) ring centroids, respectively, symmetry code:(i) -1/2 - x,1/2 - y,z] are observed, with a centroid–centroid distances of 3.568 (2) Å.

S2. Experimental

The title complound was synthesized hydrothermally in a Teflon-lined autoclave (25 ml) by heating a mixture of 2,2':6',2"-terpyridine (0.2 mmol), 2,2'-oxydibenzoic acid (0.4 mmol) and ZnSO₄.H₂O (0.2 mmol) in water (10 ml) at 393 K for 3 d. The autoclave was slowly cooled to room temperature. Crystals suitable for X-ray analysis were obtained.

S3. Refinement

All the H atoms could be detected in the difference Fourier map. Nevertheless, they were situated into the idealized position and refined using a C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry codes: (i) -x+1/2, -y+1/2, z; (ii) -x+1/2, -y-1/2, z.]

catena-Poly[[(2,2':6',2''-terpyridine- $\kappa^3 N, N', N''$)zinc(II)]- μ -2,2'-oxydibenzoato- $\kappa^2 O:O'$]

Crystal data	
$[Zn(C_{14}H_8O_5)(C_{15}H_{11}N_3)]$	F(000) = 1136
$M_r = 554.84$	$D_{\rm x} = 1.534 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pccn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ab 2ac	Cell parameters from 2235 reflections
a = 8.7985 (17) Å	$\theta = 2.1 - 25.4^{\circ}$
b = 10.694 (2) Å	$\mu = 1.07 \mathrm{~mm^{-1}}$
c = 25.535(5) Å	T = 296 K
V = 2402.6 (8) Å ³	Block, colourless
Z = 4	$0.20 \times 0.18 \times 0.16 \text{ mm}$
Data collection	
Bruker SMART APEXII CCD area-detector	15388 measured reflections
diffractometer	2924 independent reflections
Radiation source: sealed tube	2347 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
ωscans	$\theta_{\rm max} = 28.1^\circ, \theta_{\rm min} = 1.6^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2007)	$k = -10 \rightarrow 14$
$T_{\min} = 0.815, \ T_{\max} = 0.847$	$l = -27 \rightarrow 33$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.08	H-atom parameters constrained
2924 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0319P)^2 + 2.226P]$
174 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.39 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.1521 (3)	0.0127 (2)	0.37317 (9)	0.0328 (5)
C2	0.0873 (3)	-0.0769 (2)	0.33333 (8)	0.0279 (5)
C3	-0.0284 (3)	-0.0330 (2)	0.30090 (10)	0.0371 (6)
Н3	-0.0602	0.0495	0.3044	0.045*
C4	-0.0974 (3)	-0.1075 (3)	0.26391 (11)	0.0461 (7)
H4	-0.1743	-0.0756	0.2428	0.055*
C5	-0.0514 (3)	-0.2295 (3)	0.25857 (11)	0.0484 (7)
Н5	-0.0971	-0.2807	0.2337	0.058*
C6	0.0626 (3)	-0.2760 (2)	0.29012 (11)	0.0428 (6)
H6	0.0930	-0.3589	0.2866	0.051*
C7	0.1323 (3)	-0.2002 (2)	0.32707 (9)	0.0311 (5)
C8	-0.0782 (4)	0.3622 (3)	0.39283 (15)	0.0611 (9)
H8	-0.0598	0.3578	0.3570	0.073*
C9	-0.2154 (4)	0.4118 (4)	0.4104 (2)	0.0781 (12)
Н9	-0.2872	0.4412	0.3866	0.094*
C10	-0.2425 (4)	0.4166 (3)	0.4628 (2)	0.0807 (13)
H10	-0.3337	0.4489	0.4752	0.097*
C11	-0.1361 (4)	0.3741 (3)	0.49663 (16)	0.0647 (10)
H11	-0.1540	0.3766	0.5325	0.078*
C12	-0.0007 (3)	0.3269 (2)	0.47753 (11)	0.0450 (7)
C13	0.1247 (3)	0.2844 (2)	0.51128 (10)	0.0437 (7)
C14	0.1214 (5)	0.2817 (3)	0.56602 (12)	0.0699 (11)
H14	0.0327	0.3013	0.5840	0.084*
C15	0.2500	0.2500	0.59255 (18)	0.084 (2)
H15	0.2500	0.2500	0.6290	0.101*

N1	0.2500	0.2500	0.48583 (10)	0.0370 (7)
N2	0.0271 (3)	0.3210 (2)	0.42577 (9)	0.0423 (5)
O3	0.1871 (2)	0.11853 (16)	0.35496 (7)	0.0425 (4)
O4	0.1571 (3)	-0.0158 (2)	0.41919 (8)	0.0732 (8)
O5	0.2500	-0.2500	0.35744 (9)	0.0370 (5)
Zn1	0.2500	0.2500	0.404461 (14)	0.03014 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0402 (13)	0.0278 (13)	0.0305 (12)	0.0013 (10)	-0.0055 (10)	-0.0016 (10)
C2	0.0331 (12)	0.0246 (11)	0.0259 (11)	-0.0057 (10)	0.0003 (9)	0.0003 (8)
C3	0.0432 (14)	0.0287 (13)	0.0395 (13)	-0.0004 (11)	-0.0055 (11)	0.0021 (10)
C4	0.0428 (15)	0.0493 (17)	0.0460 (16)	-0.0070 (13)	-0.0156 (13)	0.0017 (13)
C5	0.0465 (15)	0.0482 (18)	0.0505 (16)	-0.0109 (13)	-0.0102 (13)	-0.0148 (13)
C6	0.0459 (15)	0.0295 (15)	0.0528 (16)	-0.0025 (11)	-0.0031 (13)	-0.0125 (11)
C7	0.0347 (13)	0.0285 (12)	0.0301 (11)	-0.0033 (10)	0.0026 (10)	-0.0012 (9)
C8	0.0508 (18)	0.057 (2)	0.076 (2)	0.0010 (16)	-0.0083 (17)	-0.0014 (17)
C9	0.051 (2)	0.052 (2)	0.132 (4)	0.0036 (16)	-0.014 (2)	-0.005 (2)
C10	0.0508 (19)	0.047 (2)	0.145 (4)	-0.0045 (18)	0.026 (3)	-0.028 (2)
C11	0.059 (2)	0.0445 (19)	0.090 (3)	-0.0147 (16)	0.029 (2)	-0.0232 (17)
C12	0.0480 (16)	0.0293 (14)	0.0577 (17)	-0.0145 (12)	0.0178 (14)	-0.0113 (12)
C13	0.0644 (18)	0.0292 (14)	0.0377 (14)	-0.0192 (12)	0.0137 (13)	-0.0066 (10)
C14	0.120 (3)	0.051 (2)	0.0386 (17)	-0.018 (2)	0.0285 (19)	-0.0064 (13)
C15	0.160 (6)	0.065 (3)	0.028 (2)	-0.020 (4)	0.000	0.000
N1	0.0537 (18)	0.0297 (15)	0.0277 (13)	-0.0183 (15)	0.000	0.000
N2	0.0406 (12)	0.0377 (13)	0.0487 (13)	-0.0046 (10)	0.0024 (10)	-0.0027 (10)
03	0.0645 (12)	0.0274 (9)	0.0355 (9)	-0.0114 (9)	-0.0081 (9)	-0.0014 (7)
O4	0.134 (2)	0.0536 (14)	0.0323 (11)	-0.0204 (15)	-0.0225 (12)	0.0056 (9)
05	0.0421 (13)	0.0365 (13)	0.0324 (12)	0.0100 (12)	0.000	0.000
Zn1	0.0392 (2)	0.02603 (19)	0.02521 (19)	-0.00652 (18)	0.000	0.000

Geometric parameters (Å, °)

C1—04	1.215 (3)	C10—C11	1.353 (6)
C1—O3	1.261 (3)	C10—H10	0.9300
C1—C2	1.509 (3)	C11—C12	1.383 (4)
С2—С7	1.387 (3)	C11—H11	0.9300
C2—C3	1.394 (3)	C12—N2	1.346 (3)
C3—C4	1.377 (4)	C12—C13	1.472 (4)
С3—Н3	0.9300	C13—N1	1.332 (3)
C4—C5	1.372 (4)	C13—C14	1.398 (4)
C4—H4	0.9300	C14—C15	1.362 (5)
С5—С6	1.379 (4)	C14—H14	0.9300
С5—Н5	0.9300	C15—C14 ⁱ	1.362 (5)
С6—С7	1.387 (3)	C15—H15	0.9300
С6—Н6	0.9300	N1-C13 ⁱ	1.332 (3)
С7—О5	1.399 (3)	N1—Zn1	2.078 (3)

C8—N2	1.326 (4)	N2—Zn1	2.172 (2)
C8—C9	1.393 (5)	03—Zn1	1.9699 (17)
C8—H8	0.9300	05—C7 ⁱⁱ	1.399 (3)
C9-C10	1 360 (6)	$Zn1-O3^{i}$	1 9699 (17)
C9—H9	0.9300	$7n1 - N2^{i}$	2 172 (2)
69–119	0.7500		2.172 (2)
O4—C1—O3	124.9 (2)	C12—C11—H11	120.2
O4—C1—C2	120.4 (2)	N2—C12—C11	121.3 (3)
O3—C1—C2	114.4 (2)	N2—C12—C13	115.1 (2)
C7—C2—C3	117.4 (2)	C11—C12—C13	123.5 (3)
C7—C2—C1	125.0 (2)	N1—C13—C14	119.9 (3)
C3—C2—C1	117.6 (2)	N1—C13—C12	114.8 (2)
C4—C3—C2	122.3 (2)	C14—C13—C12	125.2 (3)
С4—С3—Н3	118.8	C15—C14—C13	119.0 (4)
С2—С3—Н3	118.8	C15—C14—H14	120.5
C5—C4—C3	119.2 (3)	C13—C14—H14	120.5
C5—C4—H4	120.4	C14—C15—C14 ⁱ	120.3 (4)
C3—C4—H4	120.4	С14—С15—Н15	119.8
C4—C5—C6	119.9 (2)	C14 ⁱ —C15—H15	119.8
C4—C5—H5	120.0	$C13 - N1 - C13^{i}$	121.6 (3)
C6-C5-H5	120.0	C13 - N1 - Zn1	11920(16)
C5—C6—C7	120.5 (2)	$C13^{i}$ $N1$ $Zn1$	119.20 (16)
C5—C6—H6	1197	C8-N2-C12	1187(3)
C7—C6—H6	119.7	C8 - N2 - 7n1	126.0(2)
$C_{6}-C_{7}-C_{2}$	120.5(2)	C12 = N2 = Zn1	120.0(2) 115 24 (19)
C6-C7-O5	120.3(2) 118.8(2)	C1 = O3 = 7n1	113.24(15) 118 19(15)
C_{2} C_{7} C_{5}	120.6(2)	$C7^{ii} - 05 - C7$	110.17(10)
$N_2 - C_8 - C_9$	120.0(2) 121.9(4)	$03 - 7n1 - 03^{i}$	112.7(2) 100.17(10)
N2_C8_H8	110 1	O_3 Z_{n1} N_1	100.17(10) 129.91(5)
C_{0} C_{8} H_{8}	110.1	O_3^i Z_{n1} N1	129.91(5) 120.02(5)
C_10 C_9 C_8	119.1 118.0(A)	$O_3 = Zn1 = N2^i$	129.92(3)
$C_{10} = C_{9} = C_{8}$	118.9 (4)	$O_3^i Z_n I N_2^i$	99.49 (9) 00.01 (0)
$C_{10} C_{20} C_{10} C_{10}$	120.0	$N_1 = T_{n1} = N_2$	75 40 (6)
$C_{8} - C_{9} - H_{9}$	120.0	N1 - ZIII - N2	73.49(0)
$C_{11} = C_{10} = C_{9}$	119.0 (4)	$O_{2i} = Z_{m1} = N_{2}$	99.01 (9)
C_{10} C_{10} H_{10}	120.2	$V_3 - Z_{III} - N_2$	99.49 (9) 75.40 (6)
$C_{2} = C_{10} = H_{10}$	120.2	$\frac{1}{1} - \frac{1}{2} - \frac{1}{1} - \frac{1}{12}$	75.49(0)
C10-C11-C12	119.0 (4)	N2:Zm1N2	150.99 (12)
CIO-CII-HII	120.2		
O4—C1—C2—C7	-52.7 (4)	C9—C8—N2—C12	0.4 (5)
O3—C1—C2—C7	132.5 (3)	C9—C8—N2—Zn1	-176.8(3)
O4—C1—C2—C3	126.2 (3)	C11—C12—N2—C8	0.4 (4)
O3—C1—C2—C3	-48.6 (3)	C13—C12—N2—C8	-177.4(2)
C7—C2—C3—C4	0.2 (4)	$C_{11} - C_{12} - N_{2} - Z_{n1}$	177.9 (2)
C1 - C2 - C3 - C4	-178.8(2)	C13-C12-N2-Zn1	0.1 (3)
$C_2 - C_3 - C_4 - C_5$	0.1 (4)	04-C1-O3-7n1	-1.7(4)
C_{3} C_{4} C_{5} C_{6}	0.1 (4)	$C_2 - C_1 - O_3 - Z_{n1}$	172.90 (16)
C4 - C5 - C6 - C7	-0 5 (4)	$C6-C7-O5-C7^{ii}$	55 47 (19)
	··· (1)		

C5—C6—C7—C2	0.7 (4)	C2C7C7 ⁱⁱ	-123.7 (2)
C5—C6—C7—O5	-178.5 (2)	C1O3Zn1O3 ⁱ	173.4 (2)
C3—C2—C7—C6	-0.6 (3)	C1—O3—Zn1—N1	-6.6 (2)
C1—C2—C7—C6	178.3 (2)	$C1 - O3 - Zn1 - N2^{i}$	72.4 (2)
C3—C2—C7—O5	178.6 (2)	C1—O3—Zn1—N2	-85.2 (2)
C1—C2—C7—O5	-2.5 (4)	C13—N1—Zn1—O3	-86.96 (14)
N2-C8-C9-C10	-0.8 (6)	C13 ⁱ —N1—Zn1—O3	93.04 (14)
C8—C9—C10—C11	0.4 (6)	C13—N1—Zn1—O3 ⁱ	93.04 (14)
C9—C10—C11—C12	0.3 (5)	$C13^{i}$ $N1$ $Zn1$ $O3^{i}$	-86.96 (14)
C10-C11-C12-N2	-0.8 (4)	$C13$ — $N1$ — $Zn1$ — $N2^{i}$	-177.27 (13)
C10-C11-C12-C13	176.9 (3)	$C13^{i}$ —N1—Zn1—N2 ⁱ	2.73 (13)
N2-C12-C13-N1	2.2 (3)	C13—N1—Zn1—N2	2.72 (13)
C11—C12—C13—N1	-175.6 (2)	C13 ⁱ —N1—Zn1—N2	-177.27 (13)
N2-C12-C13-C14	-179.8 (3)	C8—N2—Zn1—O3	-55.0 (3)
C11—C12—C13—C14	2.5 (4)	C12—N2—Zn1—O3	127.67 (18)
N1-C13-C14-C15	3.4 (4)	C8—N2—Zn1—O3 ⁱ	47.0 (3)
C12—C13—C14—C15	-174.5 (2)	C12—N2—Zn1—O3 ⁱ	-130.35 (18)
C13—C14—C15—C14 ⁱ	-1.67 (19)	C8—N2—Zn1—N1	175.9 (3)
C14-C13-N1-C13 ⁱ	-1.7 (2)	C12—N2—Zn1—N1	-1.39 (17)
C12-C13-N1-C13 ⁱ	176.5 (2)	$C8$ — $N2$ — $Zn1$ — $N2^{i}$	175.9 (3)
C14—C13—N1—Zn1	178.3 (2)	$C12$ — $N2$ — $Zn1$ — $N2^{i}$	-1.39 (17)
C12—C13—N1—Zn1	-3.5 (2)		

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, *z*; (ii) -*x*+1/2, -*y*-1/2, *z*.