organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Phenyl­sulfon­yl)-L-asparagine

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: iukhan.gcu@gmail.com, kmlo@um.edu.my

(Received 28 October 2009; accepted 22 November 2009; online 28 November 2009)

In the title compound, C10H12N2O5S, one of the sulfonyl O atoms is hydrogen bonded to the amido N atom of an adjacent mol­ecule. There is also a weak hydrogen-bonding inter­action between the other sulfonyl O atom and the secondary amino N atom. In addition, the amido O atom is also hydrogen bonded to a carboxyl O atom. These hydrogen-bonding inter­actions give rise to a layer structure parallel to the bc plane.

Related literature

For related compounds, see: Koroniak et al. (2003[Koroniak, L., Ciustea, M., Gutierrez, J. A. & Richards, N. G. J. (2003). Org. Lett. 5, 2033-2036.]); Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.], 2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O5S

  • Mr = 272.28

  • Monoclinic, P 21

  • a = 10.5479 (6) Å

  • b = 5.1587 (3) Å

  • c = 11.0157 (7) Å

  • β = 92.011 (3)°

  • V = 599.03 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.25 × 0.21 × 0.13 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.964

  • 6832 measured reflections

  • 2732 independent reflections

  • 2518 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.06

  • 2732 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1187 Friedel pairs

  • Flack parameter: −0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.77 (2) 2.31 (2) 3.076 (2) 168.6 (19)
N2—H2A⋯O2ii 0.95 (3) 2.06 (3) 2.998 (3) 172 (3)
O4—H4A⋯O6iii 0.82 1.82 2.5804 (18) 155
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonamides compounds have long been studied due to their biological activity. N-acylsufonamide derivatives of asparagine have synthesized and characterized (Koroniak et al., 2003). The title compound is also a sulfonamide derivative and synthesized in continuation of our studies for the synthesis of acyclic and cyclic sulfonamides (Arshad et al., 2008), (Arshad et al., 2009). In this sulfonamide derivative of L-asparagine (Fig. 1), the molecule is twisted due to the tetrahedral geometries at S1, C7 and C9. One of the sulfonyl oxygen O2 is hydrogen-bonded to the amido nitrogen atom N2 of an adjacent molecule. The amido oxygen O6 also forms hydrogen bond with the carboxylate oxygen O4 of an adjacent molecule. There is a weak hydrogen bonding interaction between the other sulfonyl oxygen O1 and the secondary amino nitrogen N1 (Fig. 2). No significant intramolecular hydrogen bonding interaction is found in the molecule.

Related literature top

For related compounds, see: Koroniak et al. (2003); Arshad et al. (2008, 2009).

Experimental top

Asparagine (0.175 g, 1.32 mmol) was dissolved in distilled water (10 ml) in a round bottom flask (25 ml). The pH of the solution was adjusted at 8–9 using 1M, Na2CO3 solution. Benzenesulfonyl chloride (0.169 ml, 0.234 g, 1.32 mmol) was suspended to the above solution and stirred at room temperature until all the benzenesulfonyl chloride was consumed. The completion of the reaction was achieved when the suspension turned to a clear solution. Upon completion of the reaction, the pH was adjusted 1–2, using 1 N HCl solution. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized in methanol to yield white crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.93 to 0.97 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times U~eq~(C). The hydroxy H was refined with a restraint of 0.82 (1) Å. The Flack parameter refined to -0.01 (6); there were 1187 measured Friedel pairs.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of N-(benzenesulfonyl)-L-asparagine showing 70% probability displacement ellipsoids and the atom numbering scheme. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing as viewed down the crystallographic b-axis showing the hydrogen bonding interactions. Symmetry code: ii = -x+1,y+1/2,-z.
N-(Phenylsulfonyl)-L-asparagine top
Crystal data top
C10H12N2O5SF(000) = 284
Mr = 272.28Dx = 1.510 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3825 reflections
a = 10.5479 (6) Åθ = 2.6–27.4°
b = 5.1587 (3) ŵ = 0.29 mm1
c = 11.0157 (7) ÅT = 296 K
β = 92.011 (3)°Block, colorless
V = 599.03 (6) Å30.25 × 0.21 × 0.13 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
2732 independent reflections
Radiation source: fine-focus sealed tube2518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.932, Tmax = 0.964k = 66
6832 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.0133P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2732 reflectionsΔρmax = 0.33 e Å3
176 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1187 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C10H12N2O5SV = 599.03 (6) Å3
Mr = 272.28Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.5479 (6) ŵ = 0.29 mm1
b = 5.1587 (3) ÅT = 296 K
c = 11.0157 (7) Å0.25 × 0.21 × 0.13 mm
β = 92.011 (3)°
Data collection top
Bruker APEXII
diffractometer
2732 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2518 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.964Rint = 0.023
6832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.33 e Å3
S = 1.06Δρmin = 0.16 e Å3
2732 reflectionsAbsolute structure: Flack (1983), 1187 Friedel pairs
176 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91282 (16)0.8736 (3)0.28950 (15)0.0323 (4)
C20.93349 (19)0.7209 (4)0.18909 (17)0.0411 (4)
H20.87950.58380.16880.049*
C31.03713 (19)0.7776 (5)0.11920 (19)0.0503 (5)
H31.05340.67660.05160.060*
C41.11535 (19)0.9813 (5)0.1493 (2)0.0499 (5)
H41.18371.01870.10120.060*
C51.09413 (19)1.1314 (5)0.2501 (2)0.0517 (5)
H51.14831.26830.27000.062*
C60.99250 (18)1.0783 (4)0.32109 (19)0.0439 (4)
H60.97751.17830.38930.053*
C70.59899 (15)0.9058 (3)0.19546 (14)0.0279 (3)
H70.61110.71830.18730.034*
C80.64948 (16)1.0412 (3)0.08415 (14)0.0311 (3)
C90.45593 (16)0.9649 (3)0.20037 (16)0.0333 (4)
H9A0.44441.13700.23360.040*
H9B0.41870.96300.11860.040*
C100.38860 (15)0.7715 (3)0.27662 (15)0.0315 (4)
H1A0.379 (3)1.000 (7)0.406 (3)0.073 (9)*
H2A0.312 (3)0.722 (7)0.433 (3)0.090 (10)*
N10.66143 (14)0.9939 (3)0.30846 (13)0.0300 (3)
H1B0.6757 (17)1.141 (5)0.3130 (17)0.027 (5)*
N20.3616 (2)0.8376 (5)0.38858 (16)0.0575 (5)
O10.73791 (14)0.5586 (3)0.36312 (13)0.0448 (3)
O20.79671 (14)0.9371 (3)0.49048 (11)0.0458 (3)
O30.70376 (15)1.2446 (3)0.08654 (13)0.0492 (4)
O40.61999 (16)0.9065 (3)0.01409 (11)0.0485 (4)
H4A0.64030.98800.07430.073*
O60.35901 (14)0.5579 (3)0.23573 (12)0.0430 (3)
S10.77553 (4)0.82468 (8)0.37280 (3)0.03153 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0338 (7)0.0321 (10)0.0308 (8)0.0042 (6)0.0010 (6)0.0009 (6)
C20.0425 (9)0.0410 (10)0.0399 (10)0.0005 (8)0.0027 (8)0.0079 (8)
C30.0454 (10)0.0652 (15)0.0407 (10)0.0089 (10)0.0084 (8)0.0096 (10)
C40.0310 (9)0.0658 (14)0.0532 (12)0.0041 (9)0.0049 (8)0.0057 (10)
C50.0355 (10)0.0530 (13)0.0662 (14)0.0071 (9)0.0025 (9)0.0011 (11)
C60.0412 (9)0.0438 (11)0.0466 (11)0.0015 (8)0.0012 (8)0.0101 (9)
C70.0340 (8)0.0237 (7)0.0263 (8)0.0001 (6)0.0039 (6)0.0008 (6)
C80.0357 (8)0.0312 (9)0.0268 (8)0.0011 (7)0.0059 (7)0.0014 (6)
C90.0340 (8)0.0315 (9)0.0346 (9)0.0006 (7)0.0041 (7)0.0053 (7)
C100.0326 (8)0.0314 (10)0.0306 (8)0.0005 (6)0.0049 (6)0.0018 (6)
N10.0365 (7)0.0248 (7)0.0287 (7)0.0013 (6)0.0026 (6)0.0003 (6)
N20.0810 (13)0.0565 (11)0.0363 (9)0.0212 (12)0.0216 (8)0.0110 (10)
O10.0570 (8)0.0306 (7)0.0472 (8)0.0007 (6)0.0059 (6)0.0108 (6)
O20.0567 (8)0.0564 (8)0.0244 (6)0.0107 (7)0.0006 (6)0.0009 (6)
O30.0665 (9)0.0457 (9)0.0357 (7)0.0255 (7)0.0061 (6)0.0041 (6)
O40.0820 (10)0.0388 (7)0.0255 (6)0.0119 (7)0.0105 (6)0.0018 (5)
O60.0593 (8)0.0361 (7)0.0345 (6)0.0074 (6)0.0152 (6)0.0019 (5)
S10.0406 (2)0.0300 (2)0.02406 (18)0.00257 (18)0.00257 (14)0.00307 (17)
Geometric parameters (Å, º) top
C1—C21.382 (3)C7—H70.9800
C1—C61.386 (3)C8—O31.195 (2)
C1—S11.7596 (18)C8—O41.314 (2)
C2—C31.390 (3)C9—C101.499 (2)
C2—H20.9300C9—H9A0.9700
C3—C41.370 (3)C9—H9B0.9700
C3—H30.9300C10—O61.226 (2)
C4—C51.378 (3)C10—N21.320 (2)
C4—H40.9300N1—S11.6289 (15)
C5—C61.377 (3)N1—H1B0.77 (2)
C5—H50.9300N2—H1A0.88 (4)
C6—H60.9300N2—H2A0.95 (3)
C7—N11.460 (2)O1—S11.4319 (14)
C7—C81.523 (2)O2—S11.4304 (14)
C7—C91.542 (2)O4—H4A0.8200
C2—C1—C6121.60 (18)O3—C8—C7124.44 (15)
C2—C1—S1119.45 (14)O4—C8—C7109.93 (14)
C6—C1—S1118.76 (14)C10—C9—C7111.80 (14)
C1—C2—C3118.21 (19)C10—C9—H9A109.3
C1—C2—H2120.9C7—C9—H9A109.3
C3—C2—H2120.9C10—C9—H9B109.3
C4—C3—C2120.39 (19)C7—C9—H9B109.3
C4—C3—H3119.8H9A—C9—H9B107.9
C2—C3—H3119.8O6—C10—N2120.99 (18)
C3—C4—C5120.86 (19)O6—C10—C9120.76 (16)
C3—C4—H4119.6N2—C10—C9118.24 (18)
C5—C4—H4119.6C7—N1—S1120.55 (12)
C6—C5—C4119.82 (19)C7—N1—H1B116.2 (14)
C6—C5—H5120.1S1—N1—H1B110.9 (14)
C4—C5—H5120.1C10—N2—H1A113.9 (19)
C5—C6—C1119.11 (18)C10—N2—H2A117.8 (19)
C5—C6—H6120.4H1A—N2—H2A127 (3)
C1—C6—H6120.4C8—O4—H4A109.5
N1—C7—C8112.54 (13)O2—S1—O1119.35 (9)
N1—C7—C9108.73 (13)O2—S1—N1105.46 (8)
C8—C7—C9107.92 (13)O1—S1—N1106.44 (8)
N1—C7—H7109.2O2—S1—C1108.01 (9)
C8—C7—H7109.2O1—S1—C1109.25 (8)
C9—C7—H7109.2N1—S1—C1107.77 (8)
O3—C8—O4125.58 (16)
C6—C1—C2—C30.1 (3)C7—C9—C10—O679.6 (2)
S1—C1—C2—C3174.80 (16)C7—C9—C10—N2100.7 (2)
C1—C2—C3—C40.6 (3)C8—C7—N1—S199.21 (15)
C2—C3—C4—C50.9 (3)C9—C7—N1—S1141.28 (13)
C3—C4—C5—C60.6 (3)C7—N1—S1—O2168.94 (12)
C4—C5—C6—C10.1 (3)C7—N1—S1—O141.22 (15)
C2—C1—C6—C50.5 (3)C7—N1—S1—C175.87 (14)
S1—C1—C6—C5174.49 (16)C2—C1—S1—O2160.50 (14)
N1—C7—C8—O321.2 (2)C6—C1—S1—O224.43 (17)
C9—C7—C8—O398.8 (2)C2—C1—S1—O129.25 (17)
N1—C7—C8—O4161.31 (14)C6—C1—S1—O1155.68 (14)
C9—C7—C8—O478.71 (17)C2—C1—S1—N186.01 (16)
N1—C7—C9—C1078.10 (18)C6—C1—S1—N189.06 (15)
C8—C7—C9—C10159.55 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.77 (2)2.31 (2)3.076 (2)168.6 (19)
N2—H2A···O2ii0.95 (3)2.06 (3)2.998 (3)172 (3)
O4—H4A···O6iii0.821.822.5804 (18)155
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H12N2O5S
Mr272.28
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.5479 (6), 5.1587 (3), 11.0157 (7)
β (°) 92.011 (3)
V3)599.03 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.25 × 0.21 × 0.13
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
6832, 2732, 2518
Rint0.023
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.06
No. of reflections2732
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.16
Absolute structureFlack (1983), 1187 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.77 (2)2.31 (2)3.076 (2)168.6 (19)
N2—H2A···O2ii0.95 (3)2.06 (3)2.998 (3)172 (3)
O4—H4A···O6iii0.821.822.5804 (18)155
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z.
 

Acknowledgements

We thank Higher Education Commission of Pakistan, GC University, Lahore, and the University of Malaya for supporting this study.

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoroniak, L., Ciustea, M., Gutierrez, J. A. & Richards, N. G. J. (2003). Org. Lett. 5, 2033–2036.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds