organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Bis(di­phenyl­phosphino)ethyl­amine

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and bR & D DiVision, Sasol Technology (Pty) Ltd., 1 Klasie Havenga Road, Sasolburg 1947, South Africa
*Correspondence e-mail: cloeten.sci@ufs.ac.za

(Received 20 October 2009; accepted 2 November 2009; online 14 November 2009)

In the title compound, C26H25NP2, the diphenyl­phosphino groups are staggered relative to the PNP backbone, even though the ethyl substituent coordinated to the N atom is not sterically bulky. The N atom adapts an almost planar geometry with two P atoms and a C atom of the allyl group attached to it in order to accommodate the steric bulk of the phenyl groups and the alkyl group. The distortion of the trigonal-pyramidal geometry of the nitro­gen is further illustrated by the bond angles which range between 114.0 (1) and 123.7 (1)°. There are no classical inter­molecular inter­actions.

Related literature

For similar diphosphineamine non-coordinated ligands with the P—N—P angle ranging between 113.3 (2) and 122.8 (3)°, see: Keat et al. (1981[Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem Soc. Dalton Trans. pp. 2192-2198.]); Cotton et al. (1996[Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg, Chim. Acta, 252, 251-256.]); Fei et al. (2003[Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772-2779.]); Cloete et al. (2008[Cloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25NP2

  • Mr = 413.44

  • Monoclinic, P 21 /c

  • a = 9.570 (5) Å

  • b = 13.441 (5) Å

  • c = 16.907 (5) Å

  • β = 91.647 (5)°

  • V = 2173.9 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 101 K

  • 0.39 × 0.13 × 0.11 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.975

  • 25117 measured reflections

  • 5401 independent reflections

  • 4293 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 1.06

  • 5401 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The crystal structure of the title compound, (I), is presented in Figure 1. All bond distances and angles in (I) are normal and fall within the range reported for similar complexes (Keat et al., 1981; Cotton et al., 1996; Fei et al., 2003; Cloete et al., 2008)]. The distance of N1 from the P1—P2—C1 plane is 0.023 (1) Å. The geometry around the phosphorous ligands are distorted from tetrahedral geometry with C—P—C angles being the most distorted (varying from 100.36 (7) to 105.6 (1)°). The P1—N1—P2 angle (123.6 (1)°) is slightly larger than that of other similar compounds quoted above which ranges between 113.3 (2) and 122.8 (3)°. There are no classical intermolecular interactions.

Two conformers are generally found for diphosphineamines and are described (Keat et al., 1981) as C2v and Cs. In C2v conformer, the phosphorous lone pairs are cis with respect to the N—C bond while in the Cs conformer the two lone pairs are trans relative to the N—C bond. It has been postulated (Keat et al., 1981) that the Cs conformer is usually observed for diphoshineamines with relatively bulky substituents on the nitrogen atom. The title compound (I), however has a Cs conformer in solid state even though the ethyl group is not particularly bulky.

Related literature top

For similar diphosphineamine non-coordinated ligands with the P—N—P angle ranging between 113.3 (2) and 122.8 (3)°, see: Keat et al. (1981); Cotton et al. (1996); Fei et al. (2003); Cloete et al. (2008).

Experimental top

Ethylpropylamine (0.010 mol, 0.45 g) was dissolved in dichloromethane (30 ml) and placed on an ice bath and triethylamine (0.030 mol, 4.22 ml) was added to the solution while being stirred. Chlorodiphenylphosphine (0.020 mol, 3.62 ml) was slowly added to the reaction mixture. The ice bath was removed after 30 minutes and the reaction mixture was allowed to stir at room temperature for a further 12 h. The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the eluent was removed under reduced pressure and the white precipitate was collected. The product was recrystallized from methanol. Single colourless crystals were obtained (yield 2.439 g, 59.0%) the next day which were suitable for X-ray crystallography.

Refinement top

The methylene, methyl and aryl H atoms were placed in geometrically idealized positions with distances C—H = 0.99 0.98 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C-non-methyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SIR97 (Altomare et al., 1999); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). H-atoms were omitted for clarity.
[Figure 2] Fig. 2. Perspective view of the unit cell of (I) along the a axis.
N,N-Bis(diphenylphosphino)ethylamine top
Crystal data top
C26H25NP2F(000) = 872
Mr = 413.44Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 5486 reflections
a = 9.570 (5) Åθ = 2.6–27.9°
b = 13.441 (5) ŵ = 0.21 mm1
c = 16.907 (5) ÅT = 101 K
β = 91.647 (5)°Needle, colourless
V = 2173.9 (15) Å30.39 × 0.13 × 0.11 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4293 reflections with I > 2σ(I)
ω and ϕ scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.3°, θmin = 1.9°
Tmin = 0.964, Tmax = 0.975h = 1212
25117 measured reflectionsk = 1717
5401 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.8849P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.43 e Å3
5401 reflectionsΔρmin = 0.26 e Å3
262 parameters
Crystal data top
C26H25NP2V = 2173.9 (15) Å3
Mr = 413.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.570 (5) ŵ = 0.21 mm1
b = 13.441 (5) ÅT = 101 K
c = 16.907 (5) Å0.39 × 0.13 × 0.11 mm
β = 91.647 (5)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5401 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4293 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.975Rint = 0.046
25117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
5401 reflectionsΔρmin = 0.26 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35096 (13)0.21232 (9)0.71479 (7)0.0155 (3)
P10.41307 (4)0.09328 (3)0.72417 (2)0.01616 (10)
P20.29406 (4)0.26318 (3)0.62672 (2)0.01542 (10)
C10.34840 (16)0.28240 (11)0.78268 (8)0.0177 (3)
H1A0.39530.34510.76780.021*
H1B0.4020.25320.82790.021*
C20.20138 (17)0.30599 (14)0.80843 (9)0.0250 (4)
H2A0.20590.35230.85320.037*
H2B0.15510.24450.82450.037*
H2C0.14830.33640.76430.037*
C110.32088 (16)0.04094 (11)0.80923 (9)0.0174 (3)
C120.22044 (17)0.03189 (12)0.79329 (9)0.0201 (3)
H120.20410.05320.74030.024*
C130.14338 (17)0.07416 (12)0.85343 (10)0.0230 (3)
H13A0.07560.12390.84130.028*
C140.16600 (17)0.04328 (12)0.93092 (9)0.0234 (4)
H140.11260.07080.9720.028*
C150.26699 (17)0.02804 (12)0.94820 (9)0.0231 (4)
H150.28320.04881.00140.028*
C160.34485 (17)0.06956 (12)0.88827 (9)0.0206 (3)
H160.41470.11760.9010.025*
C210.58795 (16)0.11232 (11)0.76925 (8)0.0169 (3)
C220.65088 (16)0.03565 (12)0.81394 (9)0.0193 (3)
H220.59850.02240.82520.023*
C230.78758 (16)0.04296 (12)0.84186 (9)0.0203 (3)
H230.82880.01040.87110.024*
C240.86469 (17)0.12790 (13)0.82738 (9)0.0215 (3)
H240.9580.13370.84750.026*
C250.80438 (17)0.20455 (12)0.78320 (9)0.0220 (3)
H250.85680.2630.77320.026*
C260.66815 (16)0.19654 (12)0.75358 (9)0.0196 (3)
H260.6290.24880.72230.024*
C310.13695 (15)0.19368 (11)0.59763 (8)0.0167 (3)
C320.07951 (17)0.20898 (13)0.52136 (9)0.0222 (3)
H320.12420.25310.48620.027*
C330.04139 (18)0.16056 (14)0.49693 (10)0.0279 (4)
H330.0780.17040.44470.034*
C340.10978 (18)0.09766 (13)0.54801 (10)0.0277 (4)
H340.19270.06420.53090.033*
C350.05620 (17)0.08398 (13)0.62401 (10)0.0248 (4)
H350.10320.04170.65950.03*
C360.06593 (16)0.13174 (12)0.64867 (9)0.0196 (3)
H360.10150.1220.70110.024*
C410.41629 (16)0.21875 (11)0.55304 (8)0.0161 (3)
C420.52940 (16)0.28007 (12)0.53709 (9)0.0205 (3)
H420.54380.33940.56680.025*
C430.62142 (17)0.25524 (13)0.47801 (10)0.0247 (4)
H430.69840.29740.46760.03*
C440.60062 (17)0.16908 (13)0.43447 (9)0.0234 (4)
H440.66310.15240.39390.028*
C450.48928 (17)0.10702 (12)0.44978 (9)0.0201 (3)
H450.47550.04770.420.024*
C460.39761 (16)0.13181 (12)0.50904 (9)0.0184 (3)
H460.32140.0890.51960.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0194 (6)0.0161 (6)0.0110 (6)0.0014 (5)0.0010 (5)0.0018 (5)
P10.0210 (2)0.01536 (19)0.01218 (18)0.00001 (16)0.00139 (15)0.00045 (14)
P20.0176 (2)0.0164 (2)0.01224 (18)0.00027 (15)0.00057 (15)0.00007 (14)
C10.0223 (8)0.0177 (7)0.0130 (7)0.0001 (6)0.0008 (6)0.0030 (6)
C20.0246 (9)0.0316 (9)0.0187 (8)0.0050 (7)0.0009 (7)0.0062 (7)
C110.0200 (8)0.0170 (7)0.0152 (7)0.0025 (6)0.0012 (6)0.0014 (6)
C120.0239 (8)0.0180 (8)0.0185 (7)0.0004 (6)0.0001 (6)0.0010 (6)
C130.0209 (8)0.0202 (8)0.0280 (8)0.0029 (7)0.0021 (7)0.0012 (7)
C140.0227 (8)0.0242 (8)0.0238 (8)0.0040 (7)0.0080 (7)0.0053 (7)
C150.0288 (9)0.0249 (9)0.0159 (7)0.0021 (7)0.0045 (7)0.0009 (6)
C160.0245 (8)0.0207 (8)0.0165 (7)0.0019 (7)0.0004 (6)0.0002 (6)
C210.0197 (8)0.0190 (7)0.0122 (7)0.0023 (6)0.0042 (6)0.0009 (6)
C220.0236 (8)0.0170 (8)0.0176 (7)0.0008 (6)0.0046 (6)0.0004 (6)
C230.0226 (8)0.0223 (8)0.0161 (7)0.0062 (7)0.0047 (6)0.0030 (6)
C240.0166 (8)0.0264 (8)0.0217 (8)0.0028 (7)0.0031 (6)0.0004 (7)
C250.0203 (8)0.0205 (8)0.0254 (8)0.0004 (6)0.0068 (7)0.0029 (7)
C260.0211 (8)0.0198 (8)0.0183 (7)0.0037 (6)0.0050 (6)0.0035 (6)
C310.0162 (7)0.0191 (7)0.0148 (7)0.0029 (6)0.0003 (6)0.0018 (6)
C320.0198 (8)0.0309 (9)0.0159 (7)0.0022 (7)0.0006 (6)0.0031 (6)
C330.0218 (9)0.0420 (11)0.0197 (8)0.0015 (8)0.0055 (7)0.0016 (7)
C340.0195 (8)0.0311 (10)0.0323 (9)0.0035 (7)0.0039 (7)0.0043 (8)
C350.0221 (8)0.0249 (9)0.0274 (9)0.0031 (7)0.0025 (7)0.0013 (7)
C360.0184 (8)0.0235 (8)0.0169 (7)0.0018 (6)0.0005 (6)0.0004 (6)
C410.0173 (7)0.0195 (7)0.0114 (6)0.0021 (6)0.0006 (6)0.0024 (6)
C420.0191 (8)0.0228 (8)0.0193 (7)0.0019 (6)0.0012 (6)0.0011 (6)
C430.0180 (8)0.0301 (9)0.0262 (8)0.0014 (7)0.0049 (7)0.0053 (7)
C440.0198 (8)0.0344 (10)0.0159 (7)0.0093 (7)0.0031 (6)0.0063 (7)
C450.0236 (8)0.0235 (8)0.0132 (7)0.0073 (7)0.0007 (6)0.0007 (6)
C460.0186 (8)0.0203 (8)0.0164 (7)0.0002 (6)0.0012 (6)0.0017 (6)
Geometric parameters (Å, º) top
N1—C11.4856 (18)C23—H230.95
N1—P11.7127 (14)C24—C251.388 (2)
N1—P21.7130 (13)C24—H240.95
P1—C211.8369 (18)C25—C261.387 (2)
P1—C111.8478 (15)C25—H250.95
P2—C311.8255 (17)C26—H260.95
P2—C411.8331 (16)C31—C361.391 (2)
C1—C21.518 (2)C31—C321.402 (2)
C1—H1A0.99C32—C331.380 (2)
C1—H1B0.99C32—H320.95
C2—H2A0.98C33—C341.386 (2)
C2—H2B0.98C33—H330.95
C2—H2C0.98C34—C351.382 (2)
C11—C121.393 (2)C34—H340.95
C11—C161.403 (2)C35—C361.387 (2)
C12—C131.394 (2)C35—H350.95
C12—H120.95C36—H360.95
C13—C141.385 (2)C41—C421.393 (2)
C13—H13A0.95C41—C461.394 (2)
C14—C151.386 (2)C42—C431.391 (2)
C14—H140.95C42—H420.95
C15—C161.392 (2)C43—C441.384 (2)
C15—H150.95C43—H430.95
C16—H160.95C44—C451.383 (2)
C21—C261.397 (2)C44—H440.95
C21—C221.403 (2)C45—C461.391 (2)
C22—C231.382 (2)C45—H450.95
C22—H220.95C46—H460.95
C23—C241.385 (2)
C1—N1—P1122.29 (10)C24—C23—H23119.9
C1—N1—P2114.00 (10)C23—C24—C25119.44 (16)
P1—N1—P2123.65 (7)C23—C24—H24120.3
N1—P1—C21102.58 (7)C25—C24—H24120.3
N1—P1—C11104.81 (7)C26—C25—C24120.55 (15)
C21—P1—C11100.36 (7)C26—C25—H25119.7
N1—P2—C31105.59 (7)C24—C25—H25119.7
N1—P2—C41105.52 (7)C25—C26—C21120.67 (15)
C31—P2—C41100.78 (7)C25—C26—H26119.7
N1—C1—C2112.95 (13)C21—C26—H26119.7
N1—C1—H1A109C36—C31—C32118.21 (15)
C2—C1—H1A109C36—C31—P2123.55 (12)
N1—C1—H1B109C32—C31—P2118.08 (12)
C2—C1—H1B109C33—C32—C31120.61 (15)
H1A—C1—H1B107.8C33—C32—H32119.7
C1—C2—H2A109.5C31—C32—H32119.7
C1—C2—H2B109.5C32—C33—C34120.51 (16)
H2A—C2—H2B109.5C32—C33—H33119.7
C1—C2—H2C109.5C34—C33—H33119.7
H2A—C2—H2C109.5C35—C34—C33119.42 (16)
H2B—C2—H2C109.5C35—C34—H34120.3
C12—C11—C16118.04 (14)C33—C34—H34120.3
C12—C11—P1117.34 (11)C34—C35—C36120.32 (15)
C16—C11—P1124.63 (12)C34—C35—H35119.8
C11—C12—C13121.46 (14)C36—C35—H35119.8
C11—C12—H12119.3C35—C36—C31120.88 (15)
C13—C12—H12119.3C35—C36—H36119.6
C14—C13—C12119.74 (15)C31—C36—H36119.6
C14—C13—H13A120.1C42—C41—C46118.76 (14)
C12—C13—H13A120.1C42—C41—P2116.96 (12)
C13—C14—C15119.70 (14)C46—C41—P2124.14 (12)
C13—C14—H14120.2C43—C42—C41120.57 (15)
C15—C14—H14120.2C43—C42—H42119.7
C14—C15—C16120.56 (15)C41—C42—H42119.7
C14—C15—H15119.7C44—C43—C42119.90 (15)
C16—C15—H15119.7C44—C43—H43120.1
C15—C16—C11120.48 (15)C42—C43—H43120.1
C15—C16—H16119.8C45—C44—C43120.33 (14)
C11—C16—H16119.8C45—C44—H44119.8
C26—C21—C22117.87 (15)C43—C44—H44119.8
C26—C21—P1122.22 (12)C44—C45—C46119.69 (15)
C22—C21—P1119.53 (12)C44—C45—H45120.2
C23—C22—C21121.29 (15)C46—C45—H45120.2
C23—C22—H22119.4C45—C46—C41120.75 (14)
C21—C22—H22119.4C45—C46—H46119.6
C22—C23—C24120.15 (15)C41—C46—H46119.6
C22—C23—H23119.9
C1—N1—P1—C2153.54 (12)C22—C23—C24—C251.4 (2)
P2—N1—P1—C21123.41 (9)C23—C24—C25—C260.1 (2)
C1—N1—P1—C1150.91 (13)C24—C25—C26—C211.6 (2)
P2—N1—P1—C11132.13 (9)C22—C21—C26—C251.6 (2)
C1—N1—P2—C31116.42 (11)P1—C21—C26—C25174.42 (11)
P1—N1—P2—C3166.40 (10)N1—P2—C31—C3614.23 (15)
C1—N1—P2—C41137.38 (10)C41—P2—C31—C36123.86 (13)
P1—N1—P2—C4139.80 (11)N1—P2—C31—C32170.32 (12)
P1—N1—C1—C2111.26 (14)C41—P2—C31—C3260.70 (13)
P2—N1—C1—C271.52 (15)C36—C31—C32—C332.5 (2)
N1—P1—C11—C12109.42 (13)P2—C31—C32—C33178.19 (13)
C21—P1—C11—C12144.47 (12)C31—C32—C33—C341.4 (3)
N1—P1—C11—C1670.44 (15)C32—C33—C34—C350.3 (3)
C21—P1—C11—C1635.67 (15)C33—C34—C35—C360.8 (3)
C16—C11—C12—C131.3 (2)C34—C35—C36—C310.3 (2)
P1—C11—C12—C13178.59 (12)C32—C31—C36—C351.9 (2)
C11—C12—C13—C140.3 (2)P2—C31—C36—C35177.36 (12)
C12—C13—C14—C151.2 (2)N1—P2—C41—C4293.59 (13)
C13—C14—C15—C160.6 (2)C31—P2—C41—C42156.74 (12)
C14—C15—C16—C111.0 (2)N1—P2—C41—C4690.85 (14)
C12—C11—C16—C151.9 (2)C31—P2—C41—C4618.82 (14)
P1—C11—C16—C15177.98 (12)C46—C41—C42—C430.4 (2)
N1—P1—C21—C2632.09 (13)P2—C41—C42—C43175.41 (12)
C11—P1—C21—C26139.97 (12)C41—C42—C43—C440.1 (2)
N1—P1—C21—C22155.21 (11)C42—C43—C44—C450.5 (2)
C11—P1—C21—C2247.33 (13)C43—C44—C45—C460.3 (2)
C26—C21—C22—C230.2 (2)C44—C45—C46—C410.3 (2)
P1—C21—C22—C23173.18 (11)C42—C41—C46—C450.6 (2)
C21—C22—C23—C241.3 (2)P2—C41—C46—C45174.89 (12)

Experimental details

Crystal data
Chemical formulaC26H25NP2
Mr413.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)101
a, b, c (Å)9.570 (5), 13.441 (5), 16.907 (5)
β (°) 91.647 (5)
V3)2173.9 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.39 × 0.13 × 0.11
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.964, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
25117, 5401, 4293
Rint0.046
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.06
No. of reflections5401
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXL97 (Sheldrick, 2008), SIR97 (Altomare et al., 1999), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the South African National Research Foundation (NRF), the Research Fund of the University of the Free State and SASOL is gratefully acknowledged. Dr A. J. Muller is also gratefully acknowledged for the collection of the crystallographic data. Part of this material is based on work supported by the South African National Research Foundation (GUN 2038915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg, Chim. Acta, 252, 251–256.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.  Web of Science CSD CrossRef Google Scholar
First citationKeat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem Soc. Dalton Trans. pp. 2192–2198.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds