

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N-Bis(diphenylphosphino)ethylamine

Nicoline Cloete,^a* Hendrik G. Visser,^a Andreas Roodt^a and William F. Gabrielli^b

^aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and ^bR & D DiVision, Sasol Technology (Pty) Ltd., 1 Klasie Havenga Road, Sasolburg 1947, South Africa Correspondence e-mail: cloeten.sci@ufs.ac.za

Received 20 October 2009; accepted 2 November 2009

Key indicators: single-crystal X-ray study; T = 101 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.094; data-to-parameter ratio = 20.6.

In the title compound, $C_{26}H_{25}NP_2$, the diphenylphosphino groups are staggered relative to the PNP backbone, even though the ethyl substituent coordinated to the N atom is not sterically bulky. The N atom adapts an almost planar geometry with two P atoms and a C atom of the allyl group attached to it in order to accommodate the steric bulk of the phenyl groups and the alkyl group. The distortion of the trigonal-pyramidal geometry of the nitrogen is further illustrated by the bond angles which range between 114.0 (1) and 123.7 (1)°. There are no classical intermolecular interactions.

Related literature

For similar diphosphineamine non-coordinated ligands with the P-N-P angle ranging between 113.3 (2) and 122.8 (3)°, see: Keat *et al.* (1981); Cotton *et al.* (1996); Fei *et al.* (2003); Cloete *et al.* (2008).

Experimental

Crystal data $C_{26}H_{25}NP_2$ $M_r = 413.44$ Monoclinic, $P2_1/c$ a = 9.570 (5) Å

b = 13.441 (5) Å
c = 16.907 (5) Å
$\beta = 91.647 \ (5)^{\circ}$
$V = 2173.9 (15) \text{ Å}^3$

Z = 4Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^{-1}$

Data collection

Bruker X8 APEXII 4K Kappa CCD	25
diffractometer	54
Absorption correction: multi-scan	42
(SADABS; Bruker, 2004)	$R_{\rm i}$
$T_{\min} = 0.964, \ T_{\max} = 0.975$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.094$ S = 1.065401 reflections T = 101 K $0.39 \times 0.13 \times 0.11 \text{ mm}$

25117 measured reflections 5401 independent reflections 4293 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$

 $\begin{array}{l} 262 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.43 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.26 \text{ e } \text{ Å}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXL97* (Sheldrick, 2008); program(s) used to refine structure: *SIR97* (Altomare *et al.*, 1999); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the South African National Research Foundation (NRF), the Research Fund of the University of the Free State and SASOL is gratefully acknowledged. Dr A. J. Muller is also gratefully acknowledged for the collection of the crystallographic data. Part of this material is based on work supported by the South African National Research Foundation (GUN 2038915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2223).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). *Acta Cryst.* E**64**, 0480.
- Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). *Inorg, Chim. Acta*, **252**, 251–256.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772-2779.
- Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem Soc. Dalton Trans. pp. 2192–2198.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o3081 [doi:10.1107/S1600536809045978]

N,N-Bis(diphenylphosphino)ethylamine

Nicoline Cloete, Hendrik G. Visser, Andreas Roodt and William F. Gabrielli

S1. Comment

The crystal structure of the title compound, (I), is presented in Figure 1. All bond distances and angles in (I) are normal and fall within the range reported for similar complexes (Keat *et al.*, 1981; Cotton *et al.*, 1996; Fei *et al.*, 2003; Cloete *et al.*, 2008)]. The distance of N1 from the P1—P2—C1 plane is 0.023 (1) Å. The geometry around the phosphorous ligands are distorted from tetrahedral geometry with C—P—C angles being the most distorted (varying from 100.36 (7) to 105.6 (1)°). The P1—N1—P2 angle (123.6 (1)°) is slightly larger than that of other similar compounds quoted above which ranges between 113.3 (2) and 122.8 (3)°. There are no classical intermolecular interactions.

Two conformers are generally found for diphosphineamines and are described (Keat *et al.*, 1981) as C_{2v} and C_s . In C_{2v} conformer, the phosphorous lone pairs are *cis* with respect to the N—C bond while in the C_s conformer the two lone pairs are *trans* relative to the N—C bond. It has been postulated (Keat *et al.*, 1981) that the C_s conformer is usually observed for diphoshineamines with relatively bulky substituents on the nitrogen atom. The title compound (I), however has a C_s conformer in solid state even though the ethyl group is not particularly bulky.

S2. Experimental

Ethylpropylamine (0.010 mol, 0.45 g) was dissolved in dichloromethane (30 ml) and placed on an ice bath and triethylamine (0.030 mol, 4.22 ml) was added to the solution while being stirred. Chlorodiphenylphosphine (0.020 mol, 3.62 ml) was slowly added to the reaction mixture. The ice bath was removed after 30 minutes and the reaction mixture was allowed to stir at room temperature for a further 12 h. The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the eluent was removed under reduced pressure and the white precipitate was collected. The product was recrystallized from methanol. Single colourless crystals were obtained (yield 2.439 g, 59.0%) the next day which were suitable for X-ray crystallography.

S3. Refinement

The methylene, methyl and aryl H atoms were placed in geometrically idealized positions with distances C—H = 0.99 0.98 and 0.95 Å, respectively and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.5 U_{eq}(C-methyl)$ and $1.2 U_{eq}(C-non-methyl)$.

Figure 1

View of (I) (50% probability displacement ellipsoids). H-atoms were omitted for clarity.

Figure 2

Perspective view of the unit cell of (I) along the *a* axis.

N,N-Bis(diphenylphosphino)ethylamine

Crystal data

C₂₆H₂₅NP₂ $M_r = 413.44$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.570 (5) Å b = 13.441 (5) Å c = 16.907 (5) Å $\beta = 91.647$ (5)° V = 2173.9 (15) Å³ Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.964, T_{\max} = 0.975$ 25117 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.094$ F(000) = 872 $D_x = 1.263 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 5486 reflections $\theta = 2.6-27.9^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 101 KNeedle, colourless $0.39 \times 0.13 \times 0.11 \text{ mm}$

5401 independent reflections 4293 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 1.9^\circ$ $h = -12 \rightarrow 12$ $k = -17 \rightarrow 17$ $l = -22 \rightarrow 22$

S = 1.065401 reflections 262 parameters 0 restraints

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0363P)^2 + 0.8849P]$	$\Delta \rho_{\rm max} = 0.43 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.35096 (13)	0.21232 (9)	0.71479 (7)	0.0155 (3)	
P1	0.41307 (4)	0.09328 (3)	0.72417 (2)	0.01616 (10)	
P2	0.29406 (4)	0.26318 (3)	0.62672 (2)	0.01542 (10)	
C1	0.34840 (16)	0.28240 (11)	0.78268 (8)	0.0177 (3)	
H1A	0.3953	0.3451	0.7678	0.021*	
H1B	0.402	0.2532	0.8279	0.021*	
C2	0.20138 (17)	0.30599 (14)	0.80843 (9)	0.0250 (4)	
H2A	0.2059	0.3523	0.8532	0.037*	
H2B	0.1551	0.2445	0.8245	0.037*	
H2C	0.1483	0.3364	0.7643	0.037*	
C11	0.32088 (16)	0.04094 (11)	0.80923 (9)	0.0174 (3)	
C12	0.22044 (17)	-0.03189 (12)	0.79329 (9)	0.0201 (3)	
H12	0.2041	-0.0532	0.7403	0.024*	
C13	0.14338 (17)	-0.07416 (12)	0.85343 (10)	0.0230 (3)	
H13A	0.0756	-0.1239	0.8413	0.028*	
C14	0.16600 (17)	-0.04328 (12)	0.93092 (9)	0.0234 (4)	
H14	0.1126	-0.0708	0.972	0.028*	
C15	0.26699 (17)	0.02804 (12)	0.94820 (9)	0.0231 (4)	
H15	0.2832	0.0488	1.0014	0.028*	
C16	0.34485 (17)	0.06956 (12)	0.88827 (9)	0.0206 (3)	
H16	0.4147	0.1176	0.901	0.025*	
C21	0.58795 (16)	0.11232 (11)	0.76925 (8)	0.0169 (3)	
C22	0.65088 (16)	0.03565 (12)	0.81394 (9)	0.0193 (3)	
H22	0.5985	-0.0224	0.8252	0.023*	
C23	0.78758 (16)	0.04296 (12)	0.84186 (9)	0.0203 (3)	
H23	0.8288	-0.0104	0.8711	0.024*	
C24	0.86469 (17)	0.12790 (13)	0.82738 (9)	0.0215 (3)	
H24	0.958	0.1337	0.8475	0.026*	
C25	0.80438 (17)	0.20455 (12)	0.78320 (9)	0.0220 (3)	
H25	0.8568	0.263	0.7732	0.026*	
C26	0.66815 (16)	0.19654 (12)	0.75358 (9)	0.0196 (3)	
H26	0.629	0.2488	0.7223	0.024*	
C31	0.13695 (15)	0.19368 (11)	0.59763 (8)	0.0167 (3)	
C32	0.07951 (17)	0.20898 (13)	0.52136 (9)	0.0222 (3)	
H32	0.1242	0.2531	0.4862	0.027*	
C33	-0.04139 (18)	0.16056 (14)	0.49693 (10)	0.0279 (4)	

H33	-0.078	0.1704	0.4447	0.034*
C34	-0.10978 (18)	0.09766 (13)	0.54801 (10)	0.0277 (4)
H34	-0.1927	0.0642	0.5309	0.033*
C35	-0.05620 (17)	0.08398 (13)	0.62401 (10)	0.0248 (4)
H35	-0.1032	0.0417	0.6595	0.03*
C36	0.06593 (16)	0.13174 (12)	0.64867 (9)	0.0196 (3)
H36	0.1015	0.122	0.7011	0.024*
C41	0.41629 (16)	0.21875 (11)	0.55304 (8)	0.0161 (3)
C42	0.52940 (16)	0.28007 (12)	0.53709 (9)	0.0205 (3)
H42	0.5438	0.3394	0.5668	0.025*
C43	0.62142 (17)	0.25524 (13)	0.47801 (10)	0.0247 (4)
H43	0.6984	0.2974	0.4676	0.03*
C44	0.60062 (17)	0.16908 (13)	0.43447 (9)	0.0234 (4)
H44	0.6631	0.1524	0.3939	0.028*
C45	0.48928 (17)	0.10702 (12)	0.44978 (9)	0.0201 (3)
H45	0.4755	0.0477	0.42	0.024*
C46	0.39761 (16)	0.13181 (12)	0.50904 (9)	0.0184 (3)
H46	0.3214	0.089	0.5196	0.022*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0194 (6)	0.0161 (6)	0.0110 (6)	0.0014 (5)	-0.0010 (5)	-0.0018 (5)
P1	0.0210(2)	0.01536 (19)	0.01218 (18)	-0.00001 (16)	0.00139 (15)	-0.00045 (14)
P2	0.0176 (2)	0.0164 (2)	0.01224 (18)	0.00027 (15)	0.00057 (15)	-0.00007 (14)
C1	0.0223 (8)	0.0177 (7)	0.0130 (7)	0.0001 (6)	-0.0008 (6)	-0.0030 (6)
C2	0.0246 (9)	0.0316 (9)	0.0187 (8)	0.0050 (7)	0.0009 (7)	-0.0062 (7)
C11	0.0200 (8)	0.0170 (7)	0.0152 (7)	0.0025 (6)	0.0012 (6)	0.0014 (6)
C12	0.0239 (8)	0.0180 (8)	0.0185 (7)	0.0004 (6)	-0.0001 (6)	-0.0010 (6)
C13	0.0209 (8)	0.0202 (8)	0.0280 (8)	-0.0029 (7)	0.0021 (7)	0.0012 (7)
C14	0.0227 (8)	0.0242 (8)	0.0238 (8)	0.0040 (7)	0.0080 (7)	0.0053 (7)
C15	0.0288 (9)	0.0249 (9)	0.0159 (7)	0.0021 (7)	0.0045 (7)	0.0009 (6)
C16	0.0245 (8)	0.0207 (8)	0.0165 (7)	-0.0019 (7)	0.0004 (6)	0.0002 (6)
C21	0.0197 (8)	0.0190 (7)	0.0122 (7)	0.0023 (6)	0.0042 (6)	-0.0009 (6)
C22	0.0236 (8)	0.0170 (8)	0.0176 (7)	0.0008 (6)	0.0046 (6)	0.0004 (6)
C23	0.0226 (8)	0.0223 (8)	0.0161 (7)	0.0062 (7)	0.0047 (6)	0.0030 (6)
C24	0.0166 (8)	0.0264 (8)	0.0217 (8)	0.0028 (7)	0.0031 (6)	0.0004 (7)
C25	0.0203 (8)	0.0205 (8)	0.0254 (8)	-0.0004 (6)	0.0068 (7)	0.0029 (7)
C26	0.0211 (8)	0.0198 (8)	0.0183 (7)	0.0037 (6)	0.0050 (6)	0.0035 (6)
C31	0.0162 (7)	0.0191 (7)	0.0148 (7)	0.0029 (6)	0.0003 (6)	-0.0018 (6)
C32	0.0198 (8)	0.0309 (9)	0.0159 (7)	0.0022 (7)	0.0006 (6)	0.0031 (6)
C33	0.0218 (9)	0.0420 (11)	0.0197 (8)	0.0015 (8)	-0.0055 (7)	-0.0016 (7)
C34	0.0195 (8)	0.0311 (10)	0.0323 (9)	-0.0035 (7)	-0.0039 (7)	-0.0043 (8)
C35	0.0221 (8)	0.0249 (9)	0.0274 (9)	-0.0031 (7)	0.0025 (7)	0.0013 (7)
C36	0.0184 (8)	0.0235 (8)	0.0169 (7)	0.0018 (6)	-0.0005 (6)	-0.0004 (6)
C41	0.0173 (7)	0.0195 (7)	0.0114 (6)	0.0021 (6)	-0.0006 (6)	0.0024 (6)
C42	0.0191 (8)	0.0228 (8)	0.0193 (7)	-0.0019 (6)	-0.0012 (6)	0.0011 (6)
C43	0.0180 (8)	0.0301 (9)	0.0262 (8)	-0.0014 (7)	0.0049 (7)	0.0053 (7)

supporting information

C44	0.0198 (8)	0.0344 (10)	0.0159 (7)	0.0093 (7)	0.0031 (6)	0.0063 (7)
C45	0.0236 (8)	0.0235 (8)	0.0132 (7)	0.0073 (7)	-0.0007 (6)	-0.0007 (6)
C46	0.0186 (8)	0.0203 (8)	0.0164 (7)	-0.0002 (6)	0.0012 (6)	0.0017 (6)

Geometric parameters (Å, °)

N1—C1	1.4856 (18)	С23—Н23	0.95
N1—P1	1.7127 (14)	C24—C25	1.388 (2)
N1—P2	1.7130 (13)	C24—H24	0.95
P1—C21	1.8369 (18)	C25—C26	1.387 (2)
P1-C11	1.8478 (15)	C25—H25	0.95
P2—C31	1.8255 (17)	C26—H26	0.95
P2-C41	1.8331 (16)	C31—C36	1.391 (2)
C1—C2	1.518 (2)	C31—C32	1.402 (2)
C1—H1A	0.99	C32—C33	1.380 (2)
C1—H1B	0.99	C32—H32	0.95
C2—H2A	0.98	C33—C34	1.386 (2)
C2—H2B	0.98	С33—Н33	0.95
C2—H2C	0.98	C34—C35	1.382 (2)
C11—C12	1.393 (2)	C34—H34	0.95
C11—C16	1.403 (2)	C35—C36	1.387 (2)
C12—C13	1.394 (2)	С35—Н35	0.95
C12—H12	0.95	C36—H36	0.95
C13—C14	1.385 (2)	C41—C42	1.393 (2)
C13—H13A	0.95	C41—C46	1.394 (2)
C14—C15	1.386 (2)	C42—C43	1.391 (2)
C14—H14	0.95	C42—H42	0.95
C15—C16	1.392 (2)	C43—C44	1.384 (2)
C15—H15	0.95	C43—H43	0.95
С16—Н16	0.95	C44—C45	1.383 (2)
C21—C26	1.397 (2)	C44—H44	0.95
C21—C22	1.403 (2)	C45—C46	1.391 (2)
C22—C23	1.382 (2)	C45—H45	0.95
С22—Н22	0.95	C46—H46	0.95
C23—C24	1.385 (2)		
C1—N1—P1	122,29 (10)	C24—C23—H23	119.9
C1 - N1 - P2	1122.29(10) 114.00(10)	C_{23} C_{24} C_{25} C_{25}	119.44 (16)
P1—N1—P2	123.65 (7)	C23—C24—H24	120.3
N1 - P1 - C21	102.58 (7)	C25—C24—H24	120.3
N1 - P1 - C11	102.30(7) 104.81(7)	$C_{26} - C_{25} - C_{24}$	120.55 (15)
C_{21} P1 $-C_{11}$	100.36(7)	C26—C25—H25	119.7
N1 - P2 - C31	105 59 (7)	C24—C25—H25	119.7
N1 - P2 - C41	105.59(7) 105.52(7)	$C_{25} - C_{26} - C_{21}$	120 67 (15)
C31 - P2 - C41	100.78 (7)	C25-C26-H26	119.7
N1-C1-C2	112.95 (13)	C21—C26—H26	119.7
N1—C1—H1A	109	$C_{36} - C_{31} - C_{32}$	118.21 (15)
C2—C1—H1A	109	C36—C31—P2	123.55 (12)

	4.0.0	~~~ ~~	
N1—C1—H1B	109	C32—C31—P2	118.08 (12)
C2—C1—H1B	109	C33—C32—C31	120.61 (15)
H1A—C1—H1B	107.8	С33—С32—Н32	119.7
C1—C2—H2A	109.5	С31—С32—Н32	119.7
C1—C2—H2B	109.5	C32—C33—C34	120.51 (16)
H2A—C2—H2B	109.5	С32—С33—Н33	119.7
C1 - C2 - H2C	109.5	C34—C33—H33	119 7
$H_2A=C_2=H_2C$	109.5	C_{35} C_{34} C_{33}	119.42 (16)
$H_{2}B = C_2 + H_2C$	109.5	$C_{35} C_{34} H_{34}$	120.3
$C_{12} = C_{11} = C_{16}$	109.5 118.04 (14)	$C_{33} = C_{34} = H_{34}$	120.3
C12 - C11 - C10	110.04(14)	$C_{33} = C_{34} = C_{34}$	120.3
	117.34 (11)	$C_{34} = C_{35} = C_{36}$	120.32 (15)
C16—C11—P1	124.63 (12)	С34—С35—Н35	119.8
C11—C12—C13	121.46 (14)	С36—С35—Н35	119.8
C11—C12—H12	119.3	C35—C36—C31	120.88 (15)
C13—C12—H12	119.3	С35—С36—Н36	119.6
C14—C13—C12	119.74 (15)	С31—С36—Н36	119.6
C14—C13—H13A	120.1	C42—C41—C46	118.76 (14)
C12—C13—H13A	120.1	C42—C41—P2	116.96 (12)
C13—C14—C15	119.70 (14)	C46—C41—P2	124.14 (12)
C_{13} C_{14} H_{14}	120.2	C_{43} C_{42} C_{41}	120.57(15)
C_{15} C_{14} H_{14}	120.2	C_{43} C_{42} C_{41} C_{41}	119.7
$C_{13} = C_{14} = C_{14}$	120.2	$C_{+3} - C_{+2} - H_{+2}$	119.7
C14 - C15 - C10	120.30 (13)	C41 - C42 - H42	119.7
	119.7		119.90 (15)
C16—C15—H15	119.7	C44—C43—H43	120.1
C15—C16—C11	120.48 (15)	C42—C43—H43	120.1
C15—C16—H16	119.8	C45—C44—C43	120.33 (14)
C11—C16—H16	119.8	C45—C44—H44	119.8
C26—C21—C22	117.87 (15)	C43—C44—H44	119.8
C26—C21—P1	122.22 (12)	C44—C45—C46	119.69 (15)
C22—C21—P1	119.53 (12)	C44—C45—H45	120.2
C23—C22—C21	121.29 (15)	C46—C45—H45	120.2
C23—C22—H22	119.4	C45—C46—C41	120.75 (14)
C_{21} C_{22} H_{22}	119.4	C_{45} C_{46} H_{46}	119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.15 (15)	C_{41} C_{46} H_{46}	119.6
$C_{22} = C_{23} = C_{24}$	120.15 (15)	C41—C40—1140	119.0
С22—С25—П25	119.9		
C1 N1 D1 C21	52 54 (12)	G22 G22 G24 G25	1 4 (2)
CI—NI—PI—C21	-53.54 (12)	022-023-024-025	-1.4 (2)
P2—N1—P1—C21	123.41 (9)	C23—C24—C25—C26	-0.1 (2)
C1—N1—P1—C11	50.91 (13)	C24—C25—C26—C21	1.6 (2)
P2—N1—P1—C11	-132.13 (9)	C22—C21—C26—C25	-1.6(2)
C1—N1—P2—C31	-116.42 (11)	P1—C21—C26—C25	-174.42 (11)
P1—N1—P2—C31	66.40 (10)	N1—P2—C31—C36	14.23 (15)
C1—N1—P2—C41	137.38 (10)	C41—P2—C31—C36	123.86 (13)
P1—N1—P2—C41	-39.80 (11)	N1—P2—C31—C32	-170.32 (12)
P1—N1—C1—C2	-111.26 (14)	C41—P2—C31—C32	-60.70 (13)
P2-N1-C1-C2	71.52 (15)	$C_{36} - C_{31} - C_{32} - C_{33}$	-2.5(2)
N1 - P1 - C11 - C12	109 42 (13)	P2-C31-C32-C33	-178 19 (13)
C_{21} D1 C_{11} C_{12}	-144 47 (12)	C_{21} C_{22} C_{23} C_{24}	1/(2)
$C_{21} - 11 - C_{11} - C_{12}$	177.7/(12)	031-032-033-034	1.7 (3)

N1—P1—C11—C16	-70.44 (15)	C32—C33—C34—C35	0.3 (3)
C21—P1—C11—C16	35.67 (15)	C33—C34—C35—C36	-0.8 (3)
C16—C11—C12—C13	1.3 (2)	C34—C35—C36—C31	-0.3 (2)
P1-C11-C12-C13	-178.59 (12)	C32—C31—C36—C35	1.9 (2)
C11—C12—C13—C14	0.3 (2)	P2-C31-C36-C35	177.36 (12)
C12—C13—C14—C15	-1.2 (2)	N1—P2—C41—C42	-93.59 (13)
C13—C14—C15—C16	0.6 (2)	C31—P2—C41—C42	156.74 (12)
C14—C15—C16—C11	1.0 (2)	N1—P2—C41—C46	90.85 (14)
C12—C11—C16—C15	-1.9 (2)	C31—P2—C41—C46	-18.82 (14)
P1-C11-C16-C15	177.98 (12)	C46—C41—C42—C43	0.4 (2)
N1—P1—C21—C26	-32.09 (13)	P2-C41-C42-C43	-175.41 (12)
C11—P1—C21—C26	-139.97 (12)	C41—C42—C43—C44	0.1 (2)
N1—P1—C21—C22	155.21 (11)	C42—C43—C44—C45	-0.5 (2)
C11—P1—C21—C22	47.33 (13)	C43—C44—C45—C46	0.3 (2)
C26—C21—C22—C23	0.2 (2)	C44—C45—C46—C41	0.3 (2)
P1—C21—C22—C23	173.18 (11)	C42—C41—C46—C45	-0.6 (2)
C21—C22—C23—C24	1.3 (2)	P2-C41-C46-C45	174.89 (12)