metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Diacetonitriletetrakis(1*H*-pyrazole- κN^2)nickel(II) dinitrate

Chien-Hong Chen,^{a,b} Chang-Chih Hsieh,^c Hon Man Lee^c and Yih-Chern Horng^c*

^aSchool of Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan, ^bDepartment of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan, and ^cDepartment of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan Correspondence e-mail: ychorng@cc.ncue.edu.tw

Received 2 November 2009; accepted 19 November 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.149; data-to-parameter ratio = 18.6.

In the title complex, $[Ni(CH_3CN)_2(C_3H_4N_2)_4](NO_3)_2$, the cation lies on an inversion center and adopts an octahedral coordination geometry about the Ni atom. The two acetonitrile ligands are in a *trans* conformation. $N-H\cdots$ O hydrogen bonds between cations and anions link the complex molecules into one-dimensional chains running parallel to [100].

Related literature

For general background and the structures of other salts of this cation, see: Hsieh *et al.* (2009).

Experimental

Crystal data [Ni(C₂H₃N)₂(C₃H₄N₂)₄](NO₃)₂ $M_r = 537.17$

Monoclinic, $P2_1/c$
a = 9.9815 (5) Å
b = 15.2831 (8) Å
c = 7.6845 (4) Å
$\beta = 98.817 \ (2)^{\circ}$
$V = 1158.40 (10) \text{ Å}^3$

Data collection

Bruker APEXII diffractometer	13134 measured reflections
Absorption correction: multi-scan	2992 independent reflections
(SADABS; Sheldrick, 1996)	2247 reflections with $I > 2\sigma$
$T_{\min} = 0.762, \ T_{\max} = 0.877$	$R_{\rm int} = 0.038$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.047 & 3 \text{ restraints} \\ wR(F^2) = 0.149 & H-\text{atom parameters constrained} \\ S = 1.09 & \Delta\rho_{\text{max}} = 1.13 \text{ e} \text{ Å}^{-3} \\ 2992 \text{ reflections} & \Delta\rho_{\text{min}} = -0.49 \text{ e} \text{ Å}^{-3} \end{array}$

Z = 2

Mo $K\alpha$ radiation

 $0.32 \times 0.23 \times 0.15 \text{ mm}$

 $\mu = 0.90 \text{ mm}^{-1}$

T = 150 K

Table 1

Hydrogen-bond geometry (Å, °).

$N4 - H8 \cdots O1^{i}$ 0.88 1.94 2.797 (4) 16	$-\mathbf{H}\cdots \mathbf{A}$
$N_2 - H_4 \cdots O_5 = 0.88 = 1.95 = 2.782 (5) = 150$	4 8

Symmetry code: (i) -x, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXSL97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *DIAMOND* (Brandenburg, 1999).

We are grateful to the National Science Council of Taiwan for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2232).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hsieh, C.-C., Lee, C.-J. & Horng, Y.-C. (2009). *Organometallics*, **28**, 4923–4928. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. **A64**, 112–122.

supporting information

Acta Cryst. (2009). E65, m1680 [doi:10.1107/S1600536809049472]

trans-Diacetonitriletetrakis(1*H*-pyrazole- κN^2)nickel(II) dinitrate

Chien-Hong Chen, Chang-Chih Hsieh, Hon Man Lee and Yih-Chern Horng

S1. Comment

In the title complex (Fig. 1), the Ni atom lies on an inversion center and adopts an octahedral coordination geometry. The two acetonitrile ligands are in a *trans* conformation. The classocal intermolecular hydrogen bonds of the type N—H…O between cations and anions link the complex into one-dimensional chains (Table 1). For general background and the structures of other salts of this cation, see: Hsieh *et al.* (2009).

S2. Experimental

A solution of Ni(NO₃)₂. $6H_2O$ (0.29 g, 0.97 mmol) and pyrazole (0.30 g, 4.30 mmol) in MeCN (25 ml) was stirred at room temperature for 10 min. After the resultant bluesolution was filtered and concentrated to 5 ml under vacuum, the concentrated filtrate was layered with diethyl ether (5-fold portion) and then kept at room temperature for 3 days. The airstable blue crystals of the title compound (0.39 g, 74%) obtained were suitable for *X*-ray crystallographic analysis.

S3. Refinement

All the H atoms were positioned geometrically and refined as riding atoms, with $C_{methine}$ —H = 0.95, C_{methyl} —H = 0.98 and N—H = 0.88 Å while $U_{iso}(H) = 1.2U_{eq}(C_{methine}$ and N) and $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. In the final difference map, the highest peak was 1.13 eÅ^-3^ (located in the center of the pyrazole ring N3/N4/C4/C5/C6) and the deepest hole was -0.49 eÅ⁻³ (0.48 Å from N4).

Figure 1

The structure of the title complex, showing 50% displacement ellipsoids; the H atoms are dipicted by circles of an arbitrary radius. Unlabeled atoms of the complex are related to labeled atoms by the symmetry operation: 1 - x, 1 - y, 2 - z.

Figure 2

A packing diagram of the title compound along the [001] direction showing the intermolecular hydrogen bonded network (dashed lines).

 $k = -17 \rightarrow 20$

 $l = -10 \rightarrow 10$

trans-Diacetonitriletetrakis(1H-pyrazole-*k*N</i<>²)nickel(II) dinitrate

Crvstal	data
Crystat	uuuu

[Ni(C ₂ H ₃ N) ₂ (C ₃ H ₄ N ₂) ₄](NO ₃) ₂ $M_r = 537.17$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.9815 (5) Å b = 15.2831 (8) Å c = 7.6845 (4) Å $\beta = 98.817$ (2)° V = 1158.40 (10) Å ³ Z = 2	F(000) = 556 $D_x = 1.540 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3410 reflections $\theta = 2.7-25.6^{\circ}$ $\mu = 0.90 \text{ mm}^{-1}$ T = 150 K Block, blue $0.32 \times 0.23 \times 0.15 \text{ mm}$
Data collection	
Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube	13134 measured reflections 2992 independent reflections 2247 reflections with $L > 2\sigma$
Graphite monochromator	$R_{\text{int}} = 0.038$
ωscans	$\theta_{\text{max}} = 28.7^{\circ}, \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.762, T_{\rm max} = 0.877$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.149$	neighbouring sites
S = 1.09	H-atom parameters constrained
2992 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0852P)^2 + 0.4971P]$
161 parameters	where $P = (F_0^2 + 2F_c^2)/3$
3 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\text{max}} = 1.13 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.49 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. IR (KBr, n_{max}/cm^{-1}): 3120w (NH), 2283*m* (C= N), 2210*m* (C= N). Elem. Anal. Calcd (%) for C₁₆H₂₂N₁₂NiO₆: C 35.78; H 4.13; N 31.29. Found: C 35.32; H 4.01; N 31.03.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.5375 (3)	0.65817 (19)	0.7527 (4)	0.0381 (6)
H1	0.6327	0.6507	0.7595	0.046*
C2	0.4624 (3)	0.7228 (2)	0.6544 (4)	0.0459 (7)
H2	0.4948	0.7667	0.5837	0.055*
C3	0.3328 (3)	0.70974 (19)	0.6813 (4)	0.0418 (7)
Н3	0.2559	0.7429	0.6316	0.050*
C4	0.3550 (4)	0.4130 (3)	0.6557 (5)	0.0562 (8)
Н5	0.4194	0.4355	0.5882	0.067*
C5	0.2476 (4)	0.3580 (3)	0.5885 (5)	0.0596 (9)
H6	0.2260	0.3373	0.4710	0.072*
C6	0.1824 (3)	0.3406 (2)	0.7211 (5)	0.0540 (8)
H7	0.1043	0.3048	0.7182	0.065*
C7	0.7342 (3)	0.44589 (18)	0.7733 (4)	0.0370 (6)
C8	0.8414 (3)	0.4248 (2)	0.6709 (5)	0.0521 (8)
Н9	0.8102	0.4377	0.5464	0.078*
H10	0.8641	0.3626	0.6846	0.078*
H11	0.9219	0.4600	0.7130	0.078*
N1	0.4583 (2)	0.60812 (14)	0.8361 (3)	0.0300 (5)
N2	0.3329 (2)	0.64146 (14)	0.7908 (3)	0.0344 (5)
H4	0.2601	0.6210	0.8284	0.041*
N3	0.3559 (2)	0.43008 (14)	0.8258 (3)	0.0321 (5)
N4	0.2488 (3)	0.38387 (18)	0.8626 (4)	0.0492 (6)
H8	0.2243	0.3820	0.9678	0.059*

N5	0.6507 (2)	0.46282 (15)	0.8523 (3)	0.0326 (5)	
N6	0.0036 (2)	0.62767 (19)	0.8693 (4)	0.0478 (6)	
Ni1	0.5000	0.5000	1.0000	0.02738 (16)	
01	-0.1214 (2)	0.61818 (17)	0.8375 (3)	0.0568 (6)	
O2	0.0532 (3)	0.6921 (2)	0.9519 (5)	0.0830 (9)	
03	0.0787 (2)	0.57249 (18)	0.8160 (5)	0.0825 (10)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0336 (13)	0.0342 (14)	0.0469 (16)	-0.0011 (11)	0.0078 (11)	0.0069 (12)
C2	0.0505 (17)	0.0364 (16)	0.0508 (18)	-0.0010 (13)	0.0080 (14)	0.0127 (13)
C3	0.0444 (15)	0.0296 (14)	0.0482 (16)	0.0067 (12)	-0.0025 (12)	0.0060 (12)
C4	0.0565 (19)	0.065 (2)	0.0475 (15)	-0.0069 (17)	0.0077 (14)	-0.0042 (16)
C5	0.063 (2)	0.059 (2)	0.054 (2)	0.0008 (18)	0.0007 (17)	-0.0118 (17)
C6	0.0427 (17)	0.0406 (18)	0.078 (2)	-0.0024 (13)	0.0063 (16)	-0.0045 (16)
C7	0.0355 (13)	0.0302 (14)	0.0446 (15)	-0.0020 (11)	0.0038 (11)	-0.0021 (11)
C8	0.0481 (17)	0.0486 (19)	0.063 (2)	0.0019 (14)	0.0212 (16)	-0.0106 (16)
N1	0.0263 (10)	0.0244 (10)	0.0388 (12)	0.0008 (8)	0.0031 (8)	0.0021 (9)
N2	0.0280 (10)	0.0261 (11)	0.0472 (13)	0.0001 (8)	-0.0005 (9)	0.0031 (9)
N3	0.0334 (11)	0.0241 (11)	0.0384 (11)	0.0016 (8)	0.0040 (9)	0.0006 (9)
N4	0.0395 (13)	0.0452 (15)	0.0627 (16)	-0.0042 (11)	0.0069 (11)	-0.0050 (13)
N5	0.0299 (10)	0.0270 (11)	0.0414 (12)	0.0005 (9)	0.0072 (9)	-0.0003 (10)
N6	0.0319 (12)	0.0479 (15)	0.0629 (17)	-0.0029 (11)	0.0052 (11)	0.0070 (13)
Ni1	0.0254 (2)	0.0217 (2)	0.0352 (3)	0.00207 (16)	0.00500 (17)	0.00278 (18)
01	0.0320 (10)	0.0643 (15)	0.0750 (16)	-0.0002 (10)	0.0110 (10)	0.0051 (13)
O2	0.0547 (16)	0.080 (2)	0.104 (2)	0.0142 (15)	-0.0210 (16)	-0.0326 (18)
03	0.0345 (12)	0.0513 (16)	0.163 (3)	-0.0029 (11)	0.0188 (16)	-0.0222 (17)

Geometric parameters (Å, °)

C1—N1	1.333 (3)	С8—Н9	0.9800
C1—C2	1.391 (4)	C8—H10	0.9800
C1—H1	0.9500	C8—H11	0.9800
C2—C3	1.355 (4)	N1—N2	1.346 (3)
С2—Н2	0.9500	N1—Ni1	2.081 (2)
C3—N2	1.340 (4)	N2—H4	0.8800
С3—Н3	0.9500	N3—N4	1.347 (3)
C4—N3	1.332 (4)	N3—Ni1	2.100 (2)
C4—C5	1.398 (5)	N4—H8	0.8800
C4—H5	0.9500	N5—Ni1	2.097 (2)
C5—C6	1.318 (5)	N6—O2	1.234 (4)
С5—Н6	0.9500	N6—O3	1.238 (4)
C6—N4	1.355 (5)	N6—O1	1.243 (3)
С6—Н7	0.9500	Ni1—N1 ⁱ	2.081 (2)
C7—N5	1.134 (3)	Ni1—N5 ⁱ	2.097 (2)
C7—C8	1.458 (4)	Ni1—N3 ⁱ	2.100 (2)

N1—C1—C2	111.0 (2)	C3—N2—N1	111.6 (2)
N1—C1—H1	124.5	C3—N2—H4	124.2
C2—C1—H1	124.5	N1—N2—H4	124.2
C3—C2—C1	105.1 (3)	C4—N3—N4	102.5 (3)
C3—C2—H2	127.5	C4—N3—Ni1	128.8 (2)
C1—C2—H2	127.5	N4—N3—Ni1	128.40 (19)
N2—C3—C2	107.6 (2)	N3—N4—C6	113.2 (3)
N2—C3—H3	126.2	N3—N4—H8	123.4
С2—С3—Н3	126.2	C6—N4—H8	123.4
N3—C4—C5	111.7 (3)	C7—N5—Ni1	177.3 (2)
N3—C4—H5	124.1	O2—N6—O3	119.9 (3)
С5—С4—Н5	124.1	O2—N6—O1	120.4 (3)
C6—C5—C4	106.1 (3)	O3—N6—O1	119.7 (3)
С6—С5—Н6	126.9	N1—Ni1—N1 ⁱ	180.000 (1)
С4—С5—Н6	126.9	N1—Ni1—N5	88.92 (9)
C5—C6—N4	106.4 (3)	N1 ⁱ —Ni1—N5	91.08 (9)
С5—С6—Н7	126.8	N1—Ni1—N5 ⁱ	91.08 (9)
N4—C6—H7	126.8	N1 ⁱ —Ni1—N5 ⁱ	88.92 (9)
N5—C7—C8	179.5 (3)	N5—Ni1—N5 ⁱ	180.00 (12)
С7—С8—Н9	109.5	N1—Ni1—N3 ⁱ	92.05 (8)
С7—С8—Н10	109.5	N1 ⁱ —Ni1—N3 ⁱ	87.95 (8)
H9—C8—H10	109.5	N5—Ni1—N3 ⁱ	90.28 (9)
C7—C8—H11	109.5	N5 ⁱ —Ni1—N3 ⁱ	89.72 (8)
H9—C8—H11	109.5	N1—Ni1—N3	87.95 (8)
H10—C8—H11	109.5	N1 ⁱ —Ni1—N3	92.05 (8)
C1—N1—N2	104.8 (2)	N5—Ni1—N3	89.72 (8)
C1—N1—Ni1	131.92 (18)	N5 ⁱ —Ni1—N3	90.28 (9)
N2—N1—Ni1	123.30 (16)	N3 ⁱ —Ni1—N3	180.0
N1—C1—C2—C3	-0.2 (4)	N2—N1—Ni1—N5	145.4 (2)
C1—C2—C3—N2	0.5 (4)	C1—N1—Ni1—N5 ⁱ	146.4 (3)
N3—C4—C5—C6	-0.5 (5)	N2—N1—Ni1—N5 ⁱ	-34.6 (2)
C4—C5—C6—N4	0.0 (4)	C1-N1-Ni1-N3 ⁱ	56.7 (3)
C2-C1-N1-N2	-0.2 (3)	N2-N1-Ni1-N3 ⁱ	-124.3 (2)
C2-C1-N1-Ni1	178.9 (2)	C1—N1—Ni1—N3	-123.3 (3)
C2—C3—N2—N1	-0.7(3)	N2—N1—Ni1—N3	55.7 (2)
C1—N1—N2—C3	0.5 (3)	C4—N3—Ni1—N1	60.2 (3)
Ni1—N1—N2—C3	-178.69 (18)	N4—N3—Ni1—N1	-127.2 (2)
C5—C4—N3—N4	0.7 (4)	C4—N3—Ni1—N1 ⁱ	-119.8 (3)
C5—C4—N3—Ni1	174.8 (2)	N4—N3—Ni1—N1 ⁱ	52.8 (2)
C4—N3—N4—C6	-0.7 (3)	C4—N3—Ni1—N5	-28.7 (3)
Ni1—N3—N4—C6	-174.8 (2)	N4—N3—Ni1—N5	143.9 (2)
C5—C6—N4—N3	0.5 (4)	C4—N3—Ni1—N5 ⁱ	151.3 (3)
C1—N1—N11—N5	-33.6 (3)	N4—N3—Ni1—N5 ⁱ	-36.1 (2)

Symmetry code: (i) -x+1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N4—H8…O1 ⁱⁱ	0.88	1.94	2.797 (4)	164
N2—H4…O3	0.88	1.95	2.782 (3)	158

Symmetry code: (ii) -x, -y+1, -z+2.