Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 5-(2,6-Difluorophenyl)-1,3,4-thiadiazol-2-amine

#### Yao Wang, Rong Wan,\* Feng Han and Peng Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: rwan@njut.edu.cn

Received 6 May 2009; accepted 12 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.109; data-to-parameter ratio = 12.3.

The title compound,  $C_8H_5F_2N_3S$ , was synthesized by the reaction of 2,6-difluorobenzoic acid and thiosemicarbazide. The dihedral angle between the thiadiazole and phenyl ring is 35.19 (14)°. In the crystal structure, intermolecular N-H···N hydrogen bonds form chains along the b and c axes.

#### **Related literature**

For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For bond-length data see: Allen et al. (1987).



**Experimental** 

Crystal data

C<sub>8</sub>H<sub>5</sub>F<sub>2</sub>N<sub>3</sub>S  $M_r = 213.21$ Monoclinic,  $P2_1/c$ a = 9.0920 (18) Å b = 8.7400 (17) Åc = 10.936 (2) Å  $\beta = 95.85 (3)^{\circ}$ 

V = 864.5 (3) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.37 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.10 \times 0.10 \; \mathrm{mm}$ 



| Enraf–Nonius CAD-4                   | 1568 independent reflections         |
|--------------------------------------|--------------------------------------|
| diffractometer                       | 1189 reflections with $I > 2\sigma($ |
| Absorption correction: $\psi$ scan   | $R_{\rm int} = 0.018$                |
| (North et al., 1968)                 | 3 standard reflections               |
| $T_{\min} = 0.931, T_{\max} = 0.964$ | every 200 reflections                |
| 1670 measured reflections            | intensity decay: 1%                  |
|                                      |                                      |
| Refinement                           |                                      |

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 127 parameters  $wR(F^2) = 0.109$ H-atom parameters constrained S = 1.01 $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$ 1568 reflections

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                             | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------|--------------|-------------------------|------------------------|--------------------------------------|
| $N3-H3A\cdots N2^{i}$ $N3-H3B\cdots N1^{ii}$ | 0.86<br>0.86 | 2.17<br>2.30            | 3.017 (4)<br>3.088 (3) | 166<br>152                           |
|                                              |              |                         |                        |                                      |

with  $I > 2\sigma(I)$ 

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x,  $-y + \frac{1}{2}$ ,  $z + \frac{1}{2}$ .

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf-Nonius CAD-4 diffractometer for this research project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2058).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pesticide Sci, 21, 195-201.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.

# supporting information

Acta Cryst. (2009). E65, o3108 [doi:10.1107/S1600536809047990]

# 5-(2,6-Difluorophenyl)-1,3,4-thiadiazol-2-amine

# Yao Wang, Rong Wan, Feng Han and Peng Wang

### S1. Comment

1,3,4-Thiadiazole derivatives represent a class of biologically important compounds, which often exhibit insecticidal, fungicidal and other biological activities (Nakagawa *et al.*, 1996; Wang *et al.*, 1999). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig.1, in which the bond lengths and angles are generally within normal ranges (Allen *et al.*, 1987). The dihedral angle between the thiadiazole and phenyl ring is  $35.19 (14)^{\circ}$ . In the crystal structure, intermolecular N—H···N hydrogen bonds (Fig. 2) form chains along the b and c axes. There are also intermolecular N-H···S contacts between the molecules, which may further stabilize the structure.

### S2. Experimental

2,6-difluorobenzoic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 90°C for 6 h. After cooling, the crude product (I) precipitated and was filtrated. Pure compound (I) was obtained by crystallization from ethanol (20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

#### S3. Refinement

All H atoms bonded to the C atoms were placed geometrically at distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}$  of the carrier atom.



# Figure 1

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.



## Figure 2

Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H…N hydrogen bonds and intermolecular N-H…S contacts between the molecules.

#### 5-(2,6-Difluorophenyl)-1,3,4-thiadiazol-2-amine

| Crystal data                 |
|------------------------------|
| $C_8H_5F_2N_3S$              |
| $M_r = 213.21$               |
| Monoclinic, $P2_1/c$         |
| a = 9.0920 (18) Å            |
| b = 8.7400(17) Å             |
| c = 10.936 (2) Å             |
| $\beta = 95.85(3)^{\circ}$   |
| V = 864.5 (3) Å <sup>3</sup> |
| Z = 4                        |
| F(000) = 432                 |
|                              |

 $D_x = 1.638 \text{ Mg m}^{-3}$ Melting point: 533 K Mo *Ka* radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections  $\theta = 10-13^{\circ}$  $\mu = 0.37 \text{ mm}^{-1}$ T = 293 KBlock, colorless  $0.20 \times 0.10 \times 0.10 \text{ mm}$  Data collection

| Enraf–Nonius CAD-4                       | 1568 independent reflections                                    |
|------------------------------------------|-----------------------------------------------------------------|
| diffractometer                           | 1189 reflections with $I > 2\sigma(I)$                          |
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.018$                                           |
| Graphite monochromator                   | $\theta_{\rm max} = 25.3^\circ, \ \theta_{\rm min} = 2.3^\circ$ |
| $\omega/2\theta$ scans                   | $h = 0 \rightarrow 10$                                          |
| Absorption correction: $\psi$ scan       | $k = 0 \rightarrow 10$                                          |
| (North <i>et al.</i> , 1968)             | $l = -13 \rightarrow 13$                                        |
| $T_{\min} = 0.931, T_{\max} = 0.964$     | 3 standard reflections every 200 reflections                    |
| 1670 measured reflections                | intensity decay: 1%                                             |
| Refinement                               |                                                                 |
| Refinement on $F^2$                      | Secondary atom site location: difference Fourier                |
| Least-squares matrix: full               | map                                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.042$          | Hydrogen site location: inferred from                           |
| $wR(F^2) = 0.109$                        | neighbouring sites                                              |
| <i>S</i> = 1.01                          | H-atom parameters constrained                                   |
| 1568 reflections                         | $w = 1/[\sigma^2(F_o^2) + (0.060P)^2 + 0.150P]$                 |
| 127 parameters                           | where $P = (F_o^2 + 2F_c^2)/3$                                  |
| 0 restraints                             | $(\Delta/\sigma)_{\rm max} < 0.001$                             |

#### Special details

direct methods

Primary atom site location: structure-invariant

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\text{max}} = 0.26 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.28 \text{ e } \text{\AA}^{-3}$ 

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| x           | У                                                                                                                                                                                                    | Ζ                                                                                                                                                                                                                                                                                                                                   | $U_{ m iso}$ */ $U_{ m eq}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.68075 (8) | 0.14488 (8)                                                                                                                                                                                          | 0.16016 (6)                                                                                                                                                                                                                                                                                                                         | 0.0423 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8904 (2)  | 0.0561 (2)                                                                                                                                                                                           | -0.18276 (16)                                                                                                                                                                                                                                                                                                                       | 0.0637 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.6608 (3)  | 0.1922 (3)                                                                                                                                                                                           | -0.07123 (19)                                                                                                                                                                                                                                                                                                                       | 0.0475 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8942 (4)  | -0.3350 (4)                                                                                                                                                                                          | -0.0851 (3)                                                                                                                                                                                                                                                                                                                         | 0.0606 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9319      | -0.4285                                                                                                                                                                                              | -0.1078                                                                                                                                                                                                                                                                                                                             | 0.073*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.6767 (2)  | -0.1812 (2)                                                                                                                                                                                          | 0.14183 (15)                                                                                                                                                                                                                                                                                                                        | 0.0616 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.6037 (3)  | 0.3224 (3)                                                                                                                                                                                           | -0.02139 (19)                                                                                                                                                                                                                                                                                                                       | 0.0495 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9208 (3)  | -0.2061 (4)                                                                                                                                                                                          | -0.1510 (3)                                                                                                                                                                                                                                                                                                                         | 0.0531 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9784      | -0.2110                                                                                                                                                                                              | -0.2165                                                                                                                                                                                                                                                                                                                             | 0.064*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.5574 (3)  | 0.4251 (3)                                                                                                                                                                                           | 0.1678 (2)                                                                                                                                                                                                                                                                                                                          | 0.0521 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.5209      | 0.5074                                                                                                                                                                                               | 0.1338                                                                                                                                                                                                                                                                                                                              | 0.062*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.5620      | 0.4143                                                                                                                                                                                               | 0.2462                                                                                                                                                                                                                                                                                                                              | 0.062*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8608 (3)  | -0.0705 (3)                                                                                                                                                                                          | -0.1185 (2)                                                                                                                                                                                                                                                                                                                         | 0.0442 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.7736 (3)  | -0.0549 (3)                                                                                                                                                                                          | -0.0209 (2)                                                                                                                                                                                                                                                                                                                         | 0.0362 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.7556 (3)  | -0.1889 (3)                                                                                                                                                                                          | 0.0433 (3)                                                                                                                                                                                                                                                                                                                          | 0.0446 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | x<br>0.68075 (8)<br>0.8904 (2)<br>0.6608 (3)<br>0.8942 (4)<br>0.9319<br>0.6767 (2)<br>0.6037 (3)<br>0.9208 (3)<br>0.9784<br>0.5574 (3)<br>0.5209<br>0.5620<br>0.8608 (3)<br>0.7736 (3)<br>0.7556 (3) | xy $0.68075(8)$ $0.14488(8)$ $0.8904(2)$ $0.0561(2)$ $0.6608(3)$ $0.1922(3)$ $0.8942(4)$ $-0.3350(4)$ $0.9319$ $-0.4285$ $0.6767(2)$ $-0.1812(2)$ $0.6037(3)$ $0.3224(3)$ $0.9208(3)$ $-0.2061(4)$ $0.9784$ $-0.2110$ $0.5574(3)$ $0.4251(3)$ $0.5209$ $0.5074$ $0.5620$ $0.4143$ $0.8608(3)$ $-0.0705(3)$ $0.7736(3)$ $-0.1889(3)$ | xyz $0.68075(8)$ $0.14488(8)$ $0.16016(6)$ $0.8904(2)$ $0.0561(2)$ $-0.18276(16)$ $0.6608(3)$ $0.1922(3)$ $-0.07123(19)$ $0.8942(4)$ $-0.3350(4)$ $-0.0851(3)$ $0.9319$ $-0.4285$ $-0.1078$ $0.6767(2)$ $-0.1812(2)$ $0.14183(15)$ $0.6037(3)$ $0.3224(3)$ $-0.02139(19)$ $0.9208(3)$ $-0.2061(4)$ $-0.1510(3)$ $0.9784$ $-0.2110$ $-0.2165$ $0.5574(3)$ $0.4251(3)$ $0.1678(2)$ $0.5209$ $0.5074$ $0.1338$ $0.5620$ $0.4143$ $0.2462$ $0.8608(3)$ $-0.0705(3)$ $-0.1185(2)$ $0.7736(3)$ $-0.1889(3)$ $0.0433(3)$ | xyz $U_{iso}*/U_{eq}$ 0.68075 (8)0.14488 (8)0.16016 (6)0.0423 (2)0.8904 (2)0.0561 (2)-0.18276 (16)0.0637 (5)0.6608 (3)0.1922 (3)-0.07123 (19)0.0475 (6)0.8942 (4)-0.3350 (4)-0.0851 (3)0.0606 (9)0.9319-0.4285-0.10780.073*0.6767 (2)-0.1812 (2)0.14183 (15)0.0616 (5)0.6037 (3)0.3224 (3)-0.02139 (19)0.0495 (6)0.9208 (3)-0.2061 (4)-0.1510 (3)0.0531 (8)0.9784-0.2110-0.21650.064*0.5574 (3)0.4251 (3)0.1678 (2)0.0521 (7)0.52090.50740.13380.062*0.56200.41430.24620.062*0.8608 (3)-0.0705 (3)-0.1185 (2)0.0442 (7)0.7736 (3)-0.0549 (3)-0.0209 (2)0.0362 (6)0.7556 (3)-0.1889 (3)0.0433 (3)0.0446 (7) |

# supporting information

| C6  | 0.8123 (4) | -0.3281 (3) | 0.0144 (3) | 0.0571 (8) |  |
|-----|------------|-------------|------------|------------|--|
| H6A | 0.7961     | -0.4149     | 0.0603     | 0.069*     |  |
| C7  | 0.7062 (3) | 0.0912 (3)  | 0.0101 (2) | 0.0357 (6) |  |
| C8  | 0.6070 (3) | 0.3142 (3)  | 0.0986 (2) | 0.0376 (6) |  |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|----|-------------|-------------|-------------|-------------|-------------|--------------|
| S  | 0.0628 (5)  | 0.0382 (4)  | 0.0272 (3)  | 0.0092 (3)  | 0.0101 (3)  | 0.0052 (3)   |
| F1 | 0.0799 (13) | 0.0567 (11) | 0.0601 (11) | 0.0030 (10) | 0.0351 (10) | 0.0104 (9)   |
| N1 | 0.0737 (17) | 0.0411 (12) | 0.0278 (11) | 0.0138 (12) | 0.0064 (11) | -0.0010 (9)  |
| C1 | 0.069 (2)   | 0.0476 (18) | 0.065 (2)   | 0.0180 (16) | 0.0049 (17) | -0.0093 (16) |
| F2 | 0.0825 (13) | 0.0493 (10) | 0.0580 (11) | 0.0069 (9)  | 0.0309 (10) | 0.0111 (8)   |
| N2 | 0.0803 (18) | 0.0405 (13) | 0.0280 (11) | 0.0176 (12) | 0.0069 (11) | 0.0017 (10)  |
| C2 | 0.0503 (18) | 0.063 (2)   | 0.0471 (17) | 0.0128 (16) | 0.0116 (14) | -0.0065 (15) |
| N3 | 0.0824 (19) | 0.0448 (13) | 0.0304 (12) | 0.0185 (13) | 0.0128 (12) | 0.0008 (10)  |
| C3 | 0.0479 (16) | 0.0468 (16) | 0.0384 (14) | 0.0020 (13) | 0.0071 (13) | 0.0000 (12)  |
| C4 | 0.0389 (15) | 0.0363 (14) | 0.0333 (13) | 0.0015 (11) | 0.0035 (11) | -0.0016 (11) |
| C5 | 0.0468 (16) | 0.0446 (15) | 0.0430 (15) | 0.0022 (13) | 0.0077 (13) | 0.0015 (13)  |
| C6 | 0.069 (2)   | 0.0377 (16) | 0.065 (2)   | 0.0041 (15) | 0.0080 (17) | 0.0039 (14)  |
| C7 | 0.0432 (15) | 0.0362 (13) | 0.0279 (12) | 0.0014 (12) | 0.0051 (11) | 0.0011 (11)  |
| C8 | 0.0481 (16) | 0.0348 (14) | 0.0298 (13) | 0.0042 (12) | 0.0042 (11) | 0.0032 (10)  |

Geometric parameters (Å, °)

| S-C8       | 1.733 (3)  | C2—C3     | 1.367 (4)   |
|------------|------------|-----------|-------------|
| S—C7       | 1.745 (2)  | C2—H2B    | 0.9300      |
| F1—C3      | 1.352 (3)  | N3—C8     | 1.336 (3)   |
| N1—C7      | 1.291 (3)  | N3—H3A    | 0.8600      |
| N1—N2      | 1.385 (3)  | N3—H3B    | 0.8600      |
| C1—C2      | 1.372 (4)  | C3—C4     | 1.400 (4)   |
| C1—C6      | 1.382 (4)  | C4—C5     | 1.384 (4)   |
| C1—H1B     | 0.9300     | C4—C7     | 1.471 (3)   |
| F2—C5      | 1.356 (3)  | C5—C6     | 1.370 (4)   |
| N2—C8      | 1.311 (3)  | С6—Н6А    | 0.9300      |
|            |            |           |             |
| C8—S—C7    | 86.98 (12) | C5—C4—C3  | 114.2 (2)   |
| C7—N1—N2   | 113.4 (2)  | C5—C4—C7  | 123.0 (2)   |
| C2-C1-C6   | 121.1 (3)  | C3—C4—C7  | 122.8 (2)   |
| C2—C1—H1B  | 119.5      | F2—C5—C6  | 118.0 (2)   |
| C6C1H1B    | 119.5      | F2—C5—C4  | 117.4 (2)   |
| C8—N2—N1   | 112.2 (2)  | C6—C5—C4  | 124.6 (3)   |
| C3—C2—C1   | 118.6 (3)  | C5—C6—C1  | 117.8 (3)   |
| C3—C2—H2B  | 120.7      | C5—C6—H6A | 121.1       |
| C1—C2—H2B  | 120.7      | C1—C6—H6A | 121.1       |
| C8—N3—H3A  | 120.0      | N1—C7—C4  | 123.1 (2)   |
| C8—N3—H3B  | 120.0      | N1—C7—S   | 113.60 (19) |
| H3A—N3—H3B | 120.0      | C4—C7—S   | 123.26 (18) |
|            |            |           |             |

| F1—C3—C2                                             | 117.9 (2)                                                                                                                                                                                                | N2—C8—N3                                             | 123.6 (2)                                                                                                                                |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| F1—C3—C4                                             | 118.4 (2)                                                                                                                                                                                                | N2—C8—S                                              | 113.82 (19)                                                                                                                              |
| C2—C3—C4                                             | 123.7 (3)                                                                                                                                                                                                | N3—C8—S                                              | 122.63 (19)                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} -0.5 (4) \\ -1.9 (5) \\ 178.7 (3) \\ 0.2 (5) \\ -176.8 (2) \\ 1.6 (4) \\ 3.6 (4) \\ -178.0 (3) \\ 177.7 (2) \\ -2.7 (4) \\ -2.1 (4) \\ 177.5 (3) \\ -179.2 (3) \\ 0.6 (5) \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.5 (5)  -178.8 (2)  0.9 (3)  -146.4 (3)  33.2 (4)  33.9 (4)  -146.5 (2)  -0.7 (2)  178.9 (2)  -179.6 (3)  -0.1 (3)  0.4 (2)  -180.0 (3) |

Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|------------------------------------|------|-------|-----------|-------------------------|
| N3—H3A···N2 <sup>i</sup>           | 0.86 | 2.17  | 3.017 (4) | 166                     |
| N3—H3 <i>B</i> ···N1 <sup>ii</sup> | 0.86 | 2.30  | 3.088 (3) | 152                     |

Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, -y+1/2, z+1/2.