Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

meso-4,5-Diphenylimidazolidin-2-one

Henry Galas, ${ }^{\text {a }}$ Russell D. Viirre ${ }^{\text {a }}$ and Alan J. Lough ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada M5B 2K3, and ${ }^{\text {b }}$ Department of Chemistry, University of Toronto, 80 St
George St, Toronto, Ontario, Canada M5B 2K3
Correspondence e-mail: alough@chem.utoronto.ca

Received 29 October 2009; accepted 2 November 2009
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.054 ; w R$ factor $=0.156$; data-to-parameter ratio $=15.6$.

The crystal structure determination of the title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$, confirms the cis relationship between the phenyl groups at the 4 - and 5 -positions on the imidazolidine ring. The dihedral angle between the two phenyl rings is 48.14 (6) ${ }^{\circ}$. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into centrosymmetric dimers. These dimers are, in turn, linked into a two-dimensional network via weak $\mathrm{N}-\mathrm{H} \cdots \pi$ (arene) interactions and $\pi-\pi$ stacking interactions with centroid-centroid distances of 3.6937 (11) \AA.

Related literature

For the first synthesis of this compound, see: Biniecki \& Moll (1974). For the synthesis of the trans-isomers, see: Sankhavasi et al. (1991). For the crystal structure of the (R, R)-isomer, see: Siegler \& Long (2006). For the synthesis of the precursor, see: Proskurnina et al. (2002). For applications of related enantiopure compounds, see: Sankhavasi et al. (1991); Isobe et al. (1998); Lou et al. (2004). For potential applications of the title compound, see: Porosa \& Viirre (2009).

Experimental

Crystal data

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}
$$

$$
c=11.3211(7) \AA
$$

$$
\alpha=86.147(3)^{\circ}
$$

$$
\beta=76.094
$$

$$
\gamma=82.718(3)^{\circ}
$$

$$
\begin{aligned}
& \gamma=82 . / 18(3) \\
& V=596.32(6) \AA^{3}
\end{aligned}
$$

$Z=2$
$T=150 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$0.20 \times 0.20 \times 0.08 \mathrm{~mm}$

Data collection
Nonius KappaCCD diffractometer Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.873, T_{\text {max }}=0.995$
6535 measured reflections 2685 independent reflections 1771 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.156$
$S=1.03$
H atoms treated by a mixture of independent and constrained refinement
2685 reflections
172 parameters
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.93(2)$	$1.94(2)$	$2.864(2)$	$173(2)$
N2-H2N $\cdots \mathrm{Cg}^{\mathrm{ii}}$	$0.87(2)$	$2.46(2)$	$3.322(2)$	$165(2)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+2 . C g 1$ is the centroid of the C4-C9 ring.

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

The authors are grateful for financial support from the American Chemical Society Petroleum Research Fund, the Dean's Seed Fund Initiative (Ryerson University), NSERC Canada and the University of Toronto.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2668).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Biniecki, S. \& Moll, M. (1974). Acta Pol. Pharm. 31, 731-734.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Isobe, T., Fukuda, K. \& Ishikawa, T. (1998). Tetrahedron Asymmetry, 9, 17291735.

Lou, Y., Horikawa, M., Kloster, R. A., Hawryluk, N. A. \& Corey, E. J. (2004). J. Am. Chem. Soc. 126, 8916-8918.
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Porosa, L. \& Viirre, R. D. (2009). Tetrahedron Lett. 50, 4170-4173.
Proskurnina, M. V., Lozinskaya, N. A., Tkachenko, S. E. \& Zefirov, N. S. (2002). Russ. J. Org. Chem. 8, 1149-1153.

Sankhavasi, W., Yamamoto, M., Kohmoto, S. \& Yamada, K. (1991). Bull. Chem. Soc. Jpn, 64, 1425-1427.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siegler, M. \& Long, S. (2006). Acta Cryst. E62, o5310-o5311.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o3087 [doi:10.1107/S1600536809046133]

meso-4,5-Diphenylimidazolidin-2-one

Henry Galas, Russell D. Viirre and Alan J. Lough

S1. Comment

The title compound is a meso-compound, and is therefore achiral. The trans-isomer is chiral, and both antipodal isomers have been synthesized (Sankhavasi et al., 1991). The crystal structure of the $(4 R, 5 R)$-isomer has already been determined (Siegler \& Long, 2006). Enantiopure samples of the trans-isomers have found use as precursors for chiral auxiliaries (Sankhavasi et al., 1991), chiral catalysts (Isobe et al., 1998), and chiral ligands (Lou et al., 2004). The title compound might also be of similar use if desymmetrization can be accomplished by selective reaction of one of the two enantiotopic nitrogen atoms, for instance using an enantioselective Buchwald-Hartwig reaction (Porosa \& Viirre (2009).
The title compound was prepared according to the reaction scheme shown in Fig. 3. The imine-amide precursor is readily prepared by heating benzaldehyde with $\mathrm{NH}_{4} \mathrm{OAc}$ according to a literature procedure (Proskurnina et al., 2002). This compound was subjected to exhaustive hydrolysis, by heating in a mixture of HBr and acetic acid for four days, and the resultant meso-diamine was then treated with carbonyl diimidazole, resulting in the title compound.

The molecular structure is shown in Fig. 1 and confirms the cis-relationship between the phenyl groups at the 4 and 5 positions (atoms C1 and C3 by the crystallographic labelling scheme). This relative stereochemistry is initially set in the formation of the imine-amide species, which involves an electrocyclization governed by orbital symmetry considerations. Epimerization did not occur, even upon prolonged exposure to strong acid and heat in the hydrolysis of the imine and amide groups.
The dihedral angle between the two phenyl rings (C4—C9 and C10-C15) is 48.14 (6) ${ }^{\circ}$. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into centrostmmetric dimers (Fig. 2). These dimers, are in turn, linked into a two-dimensional network via weak $\mathrm{N}-\mathrm{H} \cdots \pi$ (arene) interactions and $\pi-\pi$ stacking interactions with $C g 1 \cdots C g 1(-x, 2-y, 1-z)=3.6937(11) \AA$, where $C g 1$ is the centroid defined by ring atoms $\mathrm{C} 4-\mathrm{C} 9$.

S2. Experimental

A suspension of 1,2-diamino- N-benzoyl- N^{\prime}-benzylidene-1,2-diphenylethane ($23.0 \mathrm{~g}, 57 \mathrm{mmol}$) in a mixture of glacial acetic acid $(115 \mathrm{ml})$ and 48% aqueous $\mathrm{HBr}(230 \mathrm{ml})$ was heated to reflux for four days. The mixture was then cooled in an ice bath and diethyl ether (200 ml) was added and vigourous stirring was continued for 30 minutes before being filtered and washed with diethyl ether. The solid filtrate was added to 100 ml of ice-cold 40% aqueous NaOH , which was then extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$. The organic extracts were evaporated to dryness and recrystallized from water to obtain meso-1,2-diamino-1,2-diphenylethane ($7.8 \mathrm{~g}, 65 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta \mathrm{H} 7.41-7.26(\mathrm{~m}$, $10 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR [100 MHz, $\left.\mathrm{CDCl}_{3}\right] \delta \mathrm{C} 142.8,128.3,127.5,127.4,62.7$. A portion of this diamine ($5.095 \mathrm{~g}, 24 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and cooled in an ice bath, while a solution of 1,1'-carbonyldiimidazole ($8.108 \mathrm{~g}, 50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{ml})$ was added dropwise. The mixture was stirred for two hours, and the solvent was evaporated under reduced pressure. The solid was taken up in $\mathrm{MeOH}(200 \mathrm{ml})$, cooled in an ice bath, 20 ml of 40% aqueous NaOH was added, and the mixture was stirred for 30 minutes. Methanol was evaporated under reduced
pressure, and the remaining aqueous solution was cooled in an ice bath and acidified to $\mathrm{pH}=1$ with 0.5 M HCl , upon which the title compound crystallized. The crystals were filtered to obtain meso-4,5-diphenylimidazolin-2-one (5.560 g , 97% yield). ${ }^{1} \mathrm{H}$ NMR [$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$] $\delta \mathrm{H} 7.10-7.05(\mathrm{~m}, 6 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 4 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 5.01$ (broad s, 2 H$) .{ }^{13} \mathrm{C}$ NMR [100 MHz, CDCl_{3}] $\delta \mathrm{C} 163.5,137.0,128.0,127.8,127.0,61.8$.

S3. Refinement

H atoms bound to C were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA$ and included in the refinement in a riding-model approximation with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The H atoms bonded to N atoms were refined independently with isotropic displacement parameters.

Figure 1

The molecular structure showing 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Figure 2
Part of the crystal structure showing hydrogen bonds as dashed lines.

Figure 3
The reaction scheme.
meso-4,5-Diphenylimidazolidin-2-one

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=238.28$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.3539$ (4) \AA
$b=8.6159$ (4) \AA
$c=11.3211$ (7) \AA
$\alpha=86.147(3)^{\circ}$
$\beta=76.094(3)^{\circ}$
$\gamma=82.718(3)^{\circ}$
$V=596.32(6) \AA^{3}$
$Z=2$
$F(000)=252$
$D_{\mathrm{x}}=1.327 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6535 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, colourless
$0.20 \times 0.20 \times 0.08 \mathrm{~mm}$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 9 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.873, T_{\text {max }}=0.995$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.156$
$S=1.03$
2685 reflections
172 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> 6535 measured reflections
> 2685 independent reflections
> 1771 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.047$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=3.0^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-11 \rightarrow 11$
> $l=-12 \rightarrow 14$

```
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0787 P)^{2}+0.1078 P\right]\)
where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.25\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.25\) e \(\AA^{-3}\)
```

Extinction correction: SHELXTL (Version 6.1;
Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.043 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.5277(2)$	$0.41749(16)$	$0.65182(13)$	$0.0402(4)$
N1	$0.2254(3)$	$0.55213(18)$	$0.59441(15)$	$0.0298(4)$
N2	$0.2105(3)$	$0.50802(19)$	$0.79050(15)$	$0.0310(4)$
C1	$0.0274(3)$	$0.6470(2)$	$0.65473(17)$	$0.0264(4)$
H1A	-0.0938	0.6328	0.6156	0.032^{*}
C2	$0.3394(3)$	$0.4852(2)$	$0.67556(18)$	$0.0308(5)$
C3	$-0.0134(3)$	$0.5630(2)$	$0.78442(17)$	$0.0283(5)$
H3A	-0.0926	0.4701	0.7831	0.034^{*}
C4	$0.0525(3)$	$0.8203(2)$	$0.65330(16)$	$0.0243(4)$
C5	$0.2551(3)$	$0.8742(2)$	$0.63592(17)$	$0.0288(5)$
H5A	0.3829	0.8014	0.6267	0.035^{*}
C6	$0.2724(3)$	$1.0331(2)$	$0.63194(18)$	$0.0315(5)$
H6A	0.4118	1.0687	0.6195	0.038^{*}

C7	$0.0879(3)$	$1.1399(2)$	$0.64589(18)$	$0.0318(5)$
H7A	0.1004	1.2489	0.6430	0.038^{*}
C8	$-0.1151(3)$	$1.0882(2)$	$0.66414(17)$	$0.0317(5)$
H8A	-0.2426	1.1614	0.6741	0.038^{*}
C9	$-0.1316(3)$	$0.9287(2)$	$0.66781(17)$	$0.0278(5)$
H9A	-0.2713	0.8934	0.6805	0.033^{*}
C10	$-0.1371(3)$	$0.6618(2)$	$0.88918(16)$	$0.0259(4)$
C11	$-0.0311(3)$	$0.7520(2)$	$0.94856(17)$	$0.0297(5)$
H11A	0.1228	0.7514	0.9233	0.036^{*}
C12	$-0.1480(3)$	$0.8430(2)$	$1.04446(18)$	$0.0338(5)$
H12A	-0.0735	0.9030	1.0852	0.041^{*}
C13	$-0.3712(3)$	$0.8468(2)$	$1.08089(18)$	$0.0339(5)$
H13A	-0.4510	0.9103	1.1459	0.041^{*}
C14	$-0.4787(3)$	$0.7580(2)$	$1.02265(19)$	$0.0364(5)$
H14A	-0.6328	0.7603	1.0479	0.044^{*}
C15	$-0.3626(3)$	$0.6652(2)$	$0.92714(17)$	$0.0307(5)$
H15A	-0.4376	0.6039	0.8878	0.037^{*}
H2N	$0.248(3)$	$0.441(3)$	$0.846(2)$	$0.035(6)^{*}$
H1N	$0.297(3)$	$0.569(2)$	$0.514(2)$	$0.040(6)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0377(9)$	$0.0356(8)$	$0.0365(9)$	$0.0126(7)$	$0.0019(7)$	$0.0053(6)$
N1	$0.0339(10)$	$0.0250(8)$	$0.0261(9)$	$0.0018(7)$	$-0.0011(7)$	$-0.0002(7)$
N2	$0.0309(10)$	$0.0292(9)$	$0.0270(9)$	$0.0048(7)$	$-0.0014(7)$	$0.0069(7)$
C1	$0.0257(10)$	$0.0249(9)$	$0.0265(10)$	$-0.0011(8)$	$-0.0025(8)$	$-0.0022(8)$
C2	$0.0338(12)$	$0.0231(10)$	$0.0314(11)$	$0.0017(8)$	$-0.0030(9)$	$0.0025(8)$
C3	$0.0265(10)$	$0.0236(9)$	$0.0324(10)$	$-0.0035(8)$	$-0.0019(8)$	$0.0000(8)$
C4	$0.0262(10)$	$0.0269(10)$	$0.0189(9)$	$-0.0010(8)$	$-0.0048(7)$	$0.0006(7)$
C5	$0.0279(11)$	$0.0279(10)$	$0.0299(10)$	$-0.0008(8)$	$-0.0070(8)$	$0.0013(8)$
C6	$0.0328(11)$	$0.0335(11)$	$0.0296(11)$	$-0.0088(9)$	$-0.0077(9)$	$0.0003(8)$
C7	$0.0420(12)$	$0.0253(10)$	$0.0270(10)$	$-0.0048(9)$	$-0.0056(9)$	$-0.0015(8)$
C8	$0.0334(12)$	$0.0284(10)$	$0.0292(11)$	$0.0047(9)$	$-0.0041(9)$	$0.0001(8)$
C9	$0.0245(10)$	$0.0302(10)$	$0.0275(10)$	$-0.0021(8)$	$-0.0047(8)$	$0.0006(8)$
C10	$0.0262(10)$	$0.0227(9)$	$0.0259(10)$	$-0.0024(8)$	$-0.0026(8)$	$0.0057(7)$
C11	$0.0269(10)$	$0.0310(10)$	$0.0296(10)$	$-0.0081(8)$	$-0.0017(8)$	$0.0013(8)$
C12	$0.0444(13)$	$0.0292(10)$	$0.0277(11)$	$-0.0119(9)$	$-0.0045(9)$	$0.0012(8)$
C13	$0.0402(13)$	$0.0303(11)$	$0.0258(10)$	$0.0024(9)$	$-0.0009(9)$	$0.0001(8)$
C14	$0.0262(11)$	$0.0460(13)$	$0.0326(11)$	$0.0013(9)$	$-0.0024(9)$	$0.0032(10)$
C15	$0.0288(11)$	$0.0336(11)$	$0.0288(10)$	$-0.0052(8)$	$-0.0047(8)$	$-0.0001(8)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 2$	$1.238(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9500
$\mathrm{~N} 1-\mathrm{C} 2$	$1.358(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.382(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.456(2)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9500
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.93(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.389(3)$

N2-C2	1.373 (3)
N2-C3	1.458 (3)
N2-H2N	0.87 (2)
C1-C4	1.520 (2)
C1-C3	1.571 (3)
C1-H1A	1.0000
C3-C10	1.506 (3)
C3-H3A	1.0000
C4-C9	1.386 (3)
C4-C5	1.389 (3)
C5-C6	1.384 (3)
C5-H5A	0.9500
C6-C7	1.379 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	111.46 (16)
C2-N1-H1N	119.9 (13)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	123.4 (13)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	110.27 (16)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	113.6 (14)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	124.9 (14)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4$	113.60 (15)
N1-C1-C3	99.73 (14)
C4-C1-C3	114.88 (14)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.4
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.4
C3-C1-H1A	109.4
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	126.79 (18)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 2$	125.27 (18)
N1-C2-N2	107.93 (17)
N2-C3-C10	113.62 (16)
N2-C3-C1	100.24 (14)
C10-C3-C1	116.28 (14)
N2-C3-H3A	108.8
C10-C3-H3A	108.8
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.8
C9-C4-C5	118.61 (16)
C9-C4-C1	119.26 (16)
C5-C4-C1	122.12 (16)
C6-C5-C4	120.56 (18)
C6-C5-H5A	119.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.7
C7-C6-C5	120.26 (18)
C7-C6-H6A	119.9

$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9500
$\mathrm{C} 9 — \mathrm{H} 9 \mathrm{~A}$	0.9500
$\mathrm{C} 10-\mathrm{C} 11$	$1.389(3)$
$\mathrm{C} 10-\mathrm{C} 15$	$1.391(3)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.387(3)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9500
$\mathrm{C} 12-\mathrm{C} 13$	$1.375(3)$
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9500
$\mathrm{C} 13-\mathrm{C} 14$	$1.380(3)$
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	0.9500
$\mathrm{C} 14-\mathrm{C} 15$	$1.392(3)$
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	0.9500
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9500

119.9
119.96 (17)
120.0
120.0
119.57 (18)
120.2
120.2
121.04 (17)
119.5
119.5
118.79 (18)
121.43 (17)
119.77 (17)
120.59 (18)
119.7
119.7
120.32 (19)
119.8
119.8
119.72 (19)
120.1
120.1
120.36 (19)
$\begin{array}{ll}\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A} & 119.8 \\ \mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A} & 119.8\end{array}$
C10-C15-C14 120.20 (18)
$\mathrm{C} 10-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A} \quad 119.9$
C14-C15-H15A 119.9

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O}^{\mathrm{i}}$	$0.93(2)$	$1.94(2)$	$2.864(2)$	$173(2)$

supporting information

$\mathrm{N} 2 — \mathrm{H} 2 N \cdots C g 1^{\mathrm{ii}}$	$0.87(2)$	$2.46(2)$	$3.322(2)$	$165(2)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+2$.

