Acta Crystallographica Section E **Structure Reports** Online

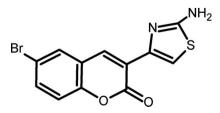
ISSN 1600-5368

# 3-(2-Amino-1,3-thiazol-4-yl)-6-bromo-2H-chromen-2-one

#### Deepak Chopra,<sup>a</sup>\* A. R. Choudhury,<sup>b</sup> K. N. Venugopala,<sup>c</sup> Thavendran Govender,<sup>d</sup> Hendrik G. Kruger,<sup>c</sup> Glenn E. M. Maguire<sup>c</sup> and T. N. Guru Row<sup>e</sup>

<sup>a</sup>Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462 023, India, <sup>b</sup>Chemistry Group, Birla Institute of Technology and Science, Pilani, 333 031, Rajasthan, India, <sup>c</sup>School of Chemistry, University of Kwazulu-Natal, Durban 4000, South Africa, <sup>d</sup>School of Pharmacy and Pharmacology, University of Kwazulu-Natal, Durban 4000, South Africa, and <sup>e</sup>Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India

Correspondence e-mail: dchopra@iiserbhopal.ac.in


Received 2 November 2009; accepted 5 November 2009

Key indicators: single-crystal X-ray study; T = 290 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.090; data-to-parameter ratio = 14.9.

The molecule of the title compound,  $C_{12}H_7BrN_2O_2S$ , is essentially planar with a maximum deviation of 0.234 (3) Å from the mean plane through all non-H atoms. The dihedral angle between the coumarin ring plane and that of the fivemembered thiazole ring is 12.9 (1) $^{\circ}$ . In the crystal, strong N- $H \cdots O, N - H \cdots N$  and weak but highly directional  $C - H \cdots O$ hydrogen bonds provide the links between the molecules. In addition, C-H··· $\pi$  and  $\pi$ - $\pi$  interactions [centroid-centroid distances = 3.950(3) - 4.024(3) Å] provide additional stability to the interlayer regions in the lattice.

#### **Related literature**

For applications of coumarin compounds in photochemistry, see: Vishnumurthy et al. (2001). For their roles as dyes or laser dyes, see: Hooper et al. (1982); Nemkovich et al. (1997). For graph-set motifs, see: Bernstein et al. (1995). For the synthesis of the title compound, see: Venugopala et al. (2004). For related structures see: Vishnumurthy et al. (2001).



9232 measured reflections

 $R_{\rm int} = 0.019$ 

2431 independent reflections

2017 reflections with  $I > 2\sigma(I)$ 

## **Experimental**

#### Crystal data

| •                               |                                           |
|---------------------------------|-------------------------------------------|
| $C_{12}H_7BrN_2O_2S$            | $V = 1208.6 (12) \text{ Å}^3$             |
| $M_r = 323.17$                  | Z = 4                                     |
| Monoclinic, $P2_1/n$            | Mo $K\alpha$ radiation                    |
| a = 7.031 (4)  Å                | $\mu = 3.57 \text{ mm}^{-1}$              |
| $b = 13.804 \ (8) \ \text{\AA}$ | $T = 290 { m K}$                          |
| c = 12.453 (7) Å                | $0.32 \times 0.12 \times 0.11 \text{ mm}$ |
| $\beta = 90.047 \ (9)^{\circ}$  |                                           |

#### Data collection

| Bruker SMART CCD area-detector         |
|----------------------------------------|
| diffractometer                         |
| Absorption correction: multi-scan      |
| (SADABS; Sheldrick, 1996)              |
| $T_{\min} = 0.641, \ T_{\max} = 0.675$ |
|                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.034$ | 163 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.090$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2431 reflections                | $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$ |

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|------|-------------------------|--------------|---------------------------|
| $N2-H2A\cdots N1^{i}$       | 0.86 | 2.32                    | 3.141 (4)    | 160                       |
| $N2-H2B\cdots O1^{ii}$      | 0.86 | 2.47                    | 3.058 (3)    | 127                       |
| C4-H4···O1 <sup>iii</sup>   | 0.93 | 2.38                    | 3.304 (4)    | 172                       |
| $C7-H7\cdots Cg1^{iv}$      | 0.93 | 2.74                    | 3.587 (4)    | 151                       |

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii)  $-x + \frac{5}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$ ; (iii)  $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$ ; (iv)  $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$ . Cg1 is the centroid of the thiazoyl ring.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

We thank the Department of Science and Technology, India for data collection on the CCD facility under the IRHPA-DST program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2669).

#### References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662-671.

Nemkovich, N. A., Reis, H. & Baumann, W. (1997). J. Lumin. 71, 255-263.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155. Venugopala, K. N., Jayashree, B. S. & Attimarad, M. (2004). *Asian J. Chem.* **16**, 872-876.

Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2001). Molecular and Supramolecular Photochemistry, p. 427, New York: Marcel Dekker Inc.
Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

# supporting information

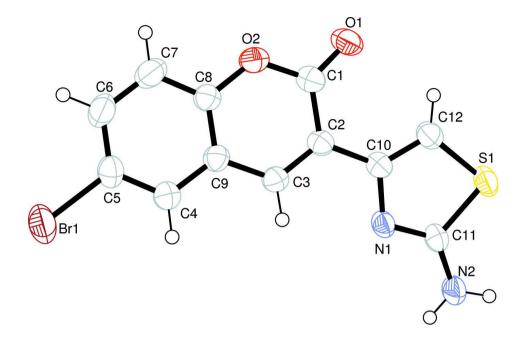
Acta Cryst. (2009). E65, o3047-o3048 [doi:10.1107/S1600536809046674]

# 3-(2-Amino-1,3-thiazol-4-yl)-6-bromo-2H-chromen-2-one

# Deepak Chopra, A. R. Choudhury, K. N. Venugopala, Thavendran Govender, Hendrik G. Kruger, Glenn E. M. Maguire and T. N. Guru Row

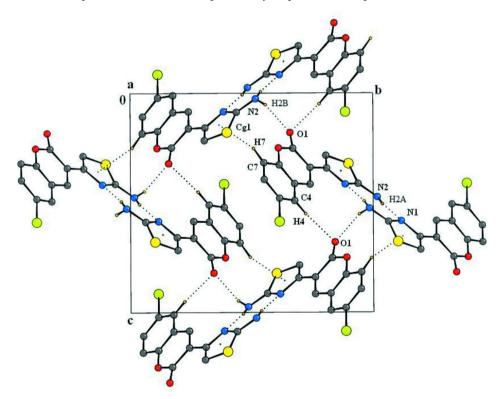
#### S1. Comment

Coumarins are an important class of organic compounds and have been extensively studied. Such molecules of vast structural diversity find useful applications in several areas of synthetic chemistry, medicinal chemistry and photochemistry. The formation of [2 + 2] cycloaddition products upon irradiation (Vishnumurthy *et al.*,2001) of coumarin and its derivatives has contributed immensely to the area of solid-state chemistry. Several substituted coumarin derivatives find applications in the dye industry (Hooper *et al.*, 1982 )and in the area of laser dyes (Nemkovich *et al.*, 1997) based on the fact that such compounds show state dependent variations in their static dipole moments. The geometry and molecular packing patterns of several coumarins derivatives have been studied to evaluate the features of non-covalent interactions (Vishnumurthy *et al.*, 2001). Against this background, and to obtain more information on such compounds the solid-state structure of the title compound is reported here.


The molecular structure consists of a bromo substituted coumarin ring attached to an amino thiazoyl moiety (Figure 1). This compound crystallizes in a monoclinic centrosymmetric space group with Z'=1. The molecule is approximately planar, with a dihedral angle between the two rings being 12.9 (1) °. An analysis of the weighted least-squares plane through the coumarin ring C1/O2 and the thiazoyl ring shows that it is planar with the largest displacement of -0.019 (2)Å for C9. A characteristic Br···S short contact with distance 3.411 (2)Å is observed in the crystal lattice. Strong N—H···N and N—H···O hydrogen bonds (involving both H2A and H2B of the amino group with the ring nitrogen N1 and keto oxygen O1) form  $R^22(8)$  [Bernstein *et al.*, 1995] molecular dimers. These are linked by C(8) molecular chains along the crystallographic *b* axis forming a characteristic "chain of dimers". Furthermore, C—H··· $\pi$  interactions (involving H7 and the aromatic thiazoyl ring) provide additional stability forming chains along 'b' axis. Two such one-dimensional chains are linked by intermolecular C—H···O hydrogen bonds (involving H4 and O1) forming C(7) molecular chains along 'n' glide leading to the formation of a two dimensional sheet-like structure (Figure 2).  $\pi$ - $\pi$  Stacking interactions involving the C4/C9 aromatic ring, Cg···Cg distance 3.950 (3)Å [Symmetry code: -x + 1, -y, -z] and between the thiazoyl ring and the C4/C9 ring [Cg···Cg distance = 4.024 (3) Å] [Symmetry code: x - 1, y, z] provide additional stability linking the layers of molecules.

#### **S2. Experimental**

The compounds were synthesized in accordance with the procedure reported in the literature (Venugopala *et al.*, 2004). Single crystals of the compound were grown both chloroform:methanol (1:1) by slow evaporation at 275–277 K.


#### **S3. Refinement**

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å,  $U_{iso} = 1.2U_{eq}$  (C) for aromatic and 0.86Å,  $U_{iso} = 1.2U_{eq}$  (N) for the NH atoms.



#### Figure 1

The structure of the title compound drawn with 50% probability displacement ellipsoids.



#### Figure 2

Packing diagram highlighting N—H···N/O hydrogen bonds and C—H···O intermolecular interactions. Only participating H atoms have been shown, others have been omitted for clarity.

#### 3-(2-Amino-1,3-thiazol-4-yl)-6-bromo-2H-chromen-2-one

#### Crystal data

C<sub>12</sub>H<sub>7</sub>BrN<sub>2</sub>O<sub>2</sub>S  $M_r = 323.17$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 7.031 (4) Å b = 13.804 (8) Å c = 12.453 (7) Å  $\beta = 90.047$  (9)° V = 1208.6 (12) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker SMART CCD area-detector           | 9232 measured reflections                                           |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 2431 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 2017 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.019$                                               |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$ |
| Absorption correction: multi-scan        | $h = -8 \rightarrow 8$                                              |
| (SADABS; Sheldrick, 1996)                | $k = -17 \rightarrow 17$                                            |
| $T_{\min} = 0.641, \ T_{\max} = 0.675$   | $l = -14 \rightarrow 15$                                            |
|                                          |                                                                     |

#### Refinement

| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.034$<br>$wR(F^2) = 0.090$ | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites                                                                                        |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S = 1.03<br>2431 reflections<br>163 parameters<br>0 restraints                                            | H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0453P)^2 + 0.6906P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.54 \text{ e} \text{ Å}^{-3}$ |
| Primary atom site location: structure-invariant direct methods                                            | $\Delta \rho_{\rm max} = 0.54 \text{ e A}^{-3}$ $\Delta \rho_{\rm min} = -0.56 \text{ e A}^{-3}$                                                                                                              |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 640

 $\theta = 1.5 - 25.8^{\circ}$ 

 $\mu = 3.57 \text{ mm}^{-1}$ T = 290 K

Needle, vellow

 $0.32 \times 0.12 \times 0.11 \text{ mm}$ 

 $D_{\rm x} = 1.776 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 895 reflections

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     |             |              |              | <b>I</b> T <b>*</b> / <b>I</b> T |
|-----|-------------|--------------|--------------|----------------------------------|
|     | x           | J.           | Z            | $U_{ m iso}$ */ $U_{ m eq}$      |
| Br1 | 0.15344 (4) | 0.88591 (3)  | 1.08569 (3)  | 0.06615 (15)                     |
| S1  | 1.40939 (9) | 0.60168 (5)  | 0.82189 (6)  | 0.04711 (19)                     |
| N1  | 1.0835 (3)  | 0.61538 (14) | 0.91596 (17) | 0.0384 (5)                       |
| N2  | 1.2684 (4)  | 0.48369 (18) | 0.9743 (2)   | 0.0507 (6)                       |

| 01  | 1.0382 (3) | 0.84207 (14) | 0.68021 (15) | 0.0525 (5) |
|-----|------------|--------------|--------------|------------|
| O2  | 0.7679 (3) | 0.88987 (13) | 0.74985 (15) | 0.0489 (5) |
| C1  | 0.9241 (4) | 0.83052 (17) | 0.7517 (2)   | 0.0407 (6) |
| C2  | 0.9369 (3) | 0.75986 (16) | 0.83941 (19) | 0.0368 (5) |
| C3  | 0.8015 (4) | 0.75970 (18) | 0.9159 (2)   | 0.0405 (6) |
| C4  | 0.4977 (4) | 0.82387 (19) | 0.9903 (2)   | 0.0445 (6) |
| C5  | 0.3471 (4) | 0.88597 (19) | 0.9794 (2)   | 0.0463 (6) |
| C6  | 0.3340 (4) | 0.9488 (2)   | 0.8935 (3)   | 0.0552 (7) |
| C7  | 0.4756 (4) | 0.9503 (2)   | 0.8172 (3)   | 0.0560 (7) |
| C8  | 0.6280 (4) | 0.88711 (17) | 0.8272 (2)   | 0.0412 (6) |
| C9  | 0.6421 (3) | 0.82394 (17) | 0.91312 (19) | 0.0383 (5) |
| C10 | 1.0974 (3) | 0.69189 (17) | 0.84259 (19) | 0.0373 (5) |
| C11 | 1.2368 (3) | 0.56253 (17) | 0.9130 (2)   | 0.0382 (5) |
| C12 | 1.2599 (4) | 0.6948 (2)   | 0.7847 (2)   | 0.0445 (6) |
| H2A | 1.1820     | 0.4644       | 1.0183       | 0.060*     |
| H2B | 1.3722     | 0.4518       | 0.9676       | 0.060*     |
| H3  | 0.8123     | 0.7161       | 0.9728       | 0.048*     |
| H4  | 0.5037     | 0.7819       | 1.0485       | 0.053*     |
| H6  | 0.2303     | 0.9902       | 0.8875       | 0.066*     |
| H7  | 0.4694     | 0.9929       | 0.7595       | 0.068*     |
| H12 | 1.2876     | 0.7407       | 0.7324       | 0.053*     |
|     |            |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$      |
|------------|-------------|-------------|-------------|--------------|--------------|---------------|
| Br1        | 0.0496 (2)  | 0.0818 (3)  | 0.0671 (2)  | 0.01305 (15) | 0.01552 (15) | -0.00836 (16) |
| <b>S</b> 1 | 0.0350 (3)  | 0.0504 (4)  | 0.0559 (4)  | 0.0006 (3)   | 0.0136 (3)   | -0.0006 (3)   |
| N1         | 0.0351 (10) | 0.0393 (11) | 0.0408 (11) | 0.0034 (8)   | 0.0086 (9)   | -0.0015 (9)   |
| N2         | 0.0430 (13) | 0.0463 (13) | 0.0628 (16) | 0.0119 (11)  | 0.0172 (12)  | 0.0071 (12)   |
| 01         | 0.0600 (12) | 0.0502 (11) | 0.0474 (11) | -0.0031 (9)  | 0.0160 (9)   | 0.0069 (9)    |
| O2         | 0.0570 (11) | 0.0453 (10) | 0.0445 (10) | 0.0075 (8)   | 0.0061 (9)   | 0.0110 (8)    |
| C1         | 0.0488 (14) | 0.0358 (12) | 0.0374 (13) | -0.0036 (11) | 0.0051 (11)  | -0.0033 (10)  |
| C2         | 0.0408 (13) | 0.0321 (11) | 0.0374 (12) | -0.0021 (10) | 0.0029 (10)  | -0.0008 (10)  |
| C3         | 0.0445 (14) | 0.0371 (13) | 0.0399 (14) | 0.0044 (10)  | 0.0036 (11)  | 0.0048 (11)   |
| C4         | 0.0452 (14) | 0.0455 (14) | 0.0429 (14) | 0.0055 (11)  | 0.0039 (11)  | 0.0011 (12)   |
| C5         | 0.0425 (14) | 0.0498 (15) | 0.0466 (15) | 0.0068 (11)  | 0.0029 (12)  | -0.0077 (12)  |
| C6         | 0.0507 (16) | 0.0538 (17) | 0.0610 (18) | 0.0174 (14)  | -0.0025 (14) | 0.0001 (14)   |
| C7         | 0.0622 (18) | 0.0512 (17) | 0.0547 (17) | 0.0134 (14)  | -0.0053 (14) | 0.0085 (14)   |
| C8         | 0.0441 (14) | 0.0401 (13) | 0.0396 (14) | 0.0026 (11)  | 0.0024 (11)  | 0.0013 (10)   |
| C9         | 0.0409 (13) | 0.0354 (12) | 0.0386 (13) | 0.0031 (10)  | 0.0011 (10)  | -0.0009 (10)  |
| C10        | 0.0396 (12) | 0.0347 (12) | 0.0376 (12) | -0.0029 (10) | 0.0045 (10)  | -0.0026 (10)  |
| C11        | 0.0344 (12) | 0.0380 (12) | 0.0423 (13) | 0.0000 (10)  | 0.0064 (10)  | -0.0054 (10)  |
| C12        | 0.0402 (14) | 0.0444 (14) | 0.0489 (15) | -0.0025 (11) | 0.0083 (12)  | 0.0036 (12)   |

Geometric parameters (Å, °)

| Br1—C5 | 1.900 (3) | С3—С9 | 1.431 (4) |
|--------|-----------|-------|-----------|
| S1—C12 | 1.722 (3) | С3—Н3 | 0.9300    |

| S1—C11     | 1.748 (3)   | C11—N2      | 1.344 (3) |
|------------|-------------|-------------|-----------|
| N1—C11     | 1.303 (3)   | C5—C6       | 1.379 (4) |
| N1—C10     | 1.399 (3)   | C2—C1       | 1.469 (3) |
| O2—C1      | 1.370 (3)   | C8—C7       | 1.383 (4) |
| O2—C8      | 1.379 (3)   | C8—C9       | 1.384 (4) |
| C4—C5      | 1.369 (4)   | C6—C7       | 1.380 (4) |
| C4—C9      | 1.399 (4)   | С6—Н6       | 0.9300    |
| C4—H4      | 0.9300      | С7—Н7       | 0.9300    |
| O1—C1      | 1.209 (3)   | N2—H2A      | 0.8600    |
| C10—C12    | 1.353 (4)   | N2—H2B      | 0.8600    |
| C10—C2     | 1.468 (3)   | C12—H12     | 0.9300    |
| C3—C2      | 1.348 (3)   |             |           |
|            |             |             |           |
| C12—S1—C11 | 88.97 (13)  | O2—C8—C7    | 118.2 (2) |
| C11—N1—C10 | 110.3 (2)   | O2—C8—C9    | 120.4 (2) |
| C1—O2—C8   | 123.0 (2)   | С7—С8—С9    | 121.4 (3) |
| C5—C4—C9   | 119.6 (3)   | O1—C1—O2    | 116.3 (2) |
| С5—С4—Н4   | 120.2       | O1—C1—C2    | 126.5 (2) |
| С9—С4—Н4   | 120.2       | O2—C1—C2    | 117.3 (2) |
| C12—C10—N1 | 115.4 (2)   | C5—C6—C7    | 119.7 (3) |
| C12—C10—C2 | 128.1 (2)   | С5—С6—Н6    | 120.2     |
| N1—C10—C2  | 116.5 (2)   | С7—С6—Н6    | 120.2     |
| C2—C3—C9   | 122.3 (2)   | C6—C7—C8    | 119.2 (3) |
| С2—С3—Н3   | 118.8       | С6—С7—Н7    | 120.4     |
| С9—С3—Н3   | 118.8       | С8—С7—Н7    | 120.4     |
| N1—C11—N2  | 124.9 (2)   | C8—C9—C4    | 118.6 (2) |
| N1—C11—S1  | 114.80 (19) | C8—C9—C3    | 117.8 (2) |
| N2—C11—S1  | 120.32 (19) | C4—C9—C3    | 123.5 (2) |
| C4—C5—C6   | 121.4 (3)   | C11—N2—H2A  | 120.0     |
| C4—C5—Br1  | 119.0 (2)   | C11—N2—H2B  | 120.0     |
| C6—C5—Br1  | 119.5 (2)   | H2A—N2—H2B  | 120.0     |
| C3—C2—C10  | 121.5 (2)   | C10-C12-S1  | 110.5 (2) |
| C3—C2—C1   | 119.1 (2)   | C10-C12-H12 | 124.7     |
| C10—C2—C1  | 119.4 (2)   | S1—C12—H12  | 124.7     |
|            |             |             |           |

### Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H  | H···A | D···A     | D—H···A |
|------------------------------------|------|-------|-----------|---------|
| $N2$ — $H2A$ ···· $N1^{i}$         | 0.86 | 2.32  | 3.141 (4) | 160     |
| N2—H2 <i>B</i> ···O1 <sup>ii</sup> | 0.86 | 2.47  | 3.058 (3) | 127     |
| C4—H4···O1 <sup>iii</sup>          | 0.93 | 2.38  | 3.304 (4) | 172     |
| C7—H7···· $Cg1^{iv}$               | 0.93 | 2.74  | 3.587 (4) | 151     |

Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+5/2, y-1/2, -z+3/2; (iii) x-1/2, -y+3/2, z+1/2; (iv) -x+1/2, y-1/2, -z+1/2.