organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-C-Phenyl­erythrono-1,4-lactone

aDiscipline of Chemistry, University of Adelaide, 5005 South Australia, Australia, bDiscipline of Wine and Horticulture, University of Adelaide, Waite Campus, Glen, Osmond 5064, South Australia, Australia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 November 2009; accepted 15 November 2009; online 21 November 2009)

The title compound (systematic name: 3,4-dihydr­oxy-3-phenyl­furan-2-one), C10H10O4, features a five-membered γ-lactone ring with an envelope conformation at the C atom carrying the hydr­oxy group without the phenyl substituent. In the crystal, supra­molecular chains mediated by O—H⋯O hydrogen bonding are formed along the a-axis direction. These are consolidated in the crystal structure by C—H⋯O contacts.

Related literature

For background on the leaf-closing substance of the tropical legume Leucaena leucocephalam, see: Ueda et al. (2001[Ueda, M., Sohtome, Y., Ueda, K. & Yamamura, S. (2001). Tetrahedron Lett. 42, 3109-3111.]); Gogoi & Argade (2004[Gogoi, S. & Argade, N. P. (2004). Tetrahedron, 60, 9093-9097.]); Koumbis et al. (2006[Koumbis, A. E., Kaitaidis, A. D. & Kotoulas, S. S. (2006). Tetrahedron Lett. 47, 8479-8481.]). For the synthesis of polyhydroxy­ated compounds from 1,2-dioxines, see: Robinson et al. (2006[Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236-7244.], 2009[Robinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093-5096.]); Valente et al. (2009[Valente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 274-282.]); Pedersen et al. (2009[Pedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400-4403.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O4

  • Mr = 194.18

  • Monoclinic, P 21 /c

  • a = 6.485 (2) Å

  • b = 7.324 (3) Å

  • c = 18.962 (7) Å

  • β = 99.378 (7)°

  • V = 888.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Rigaku AFC12κ/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.778, Tmax = 1.000

  • 21683 measured reflections

  • 1834 independent reflections

  • 1818 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.128

  • S = 1.21

  • 1834 reflections

  • 133 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O2i 0.84 1.95 2.7717 (19) 167
O4—H4o⋯O3ii 0.84 1.99 2.8188 (19) 168
C34—H34⋯O4iii 0.95 2.46 3.379 (2) 164
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Our recent investigations into the dihydroxyation of the alkene component of 1,2-dioxines has allowed access to a diverse range of polyhydroxyated compounds (Robinson et al., 2006, 2009; Valente et al., 2009). Application of this methodology to the synthesis of erythrono-γ-lactones, such as the title compound, (I), provided a concise route to potassium (2R,3R)-2,3,4-trihydroxy-2-methylbutanoate (Pedersen et al., 2009), recently identified as a leaf-closing substance of the tropical legume Leucaena leucocephalam (Ueda et al., 2001; Gogoi & Argade, 2004; Koumbis et al., 2006).

The molecular structure of (I), Fig. 1, shows the five-membered γ-lactone ring to adopt an envelope conformation on the C4 atom, with this atom being orientated in the opposite direction to the phenyl ring. Both hydroxy substituents are orientated to the same side of the γ-lactone ring but the hydroxy-H atoms face opposite directions. This arrangement allows each molecule to bridge two neighbouring molecules via O—Hhydroxy···Ohydroxy hydrogen bonds resulting in the formation of ten-membered {···HOC2O}2 synthons and the construction of supramolecular chains aligned along the a direction, Fig. 2 and Table 1. The chains are consolidated in the 3-D crystal structure via C—H···O contacts, Fig. 3 and Table 1.

Related literature top

For background on the leaf-closing substance of the tropical legume Leucaena leucocephalam, see: Ueda et al. (2001); Gogoi & Argade (2004); Koumbis et al. (2006). For the synthesis of polyhydroxyated compounds from 1,2-dioxines, see: Robinson et al. (2006, 2009); Valente et al. (2009); Pedersen et al. (2009).

Experimental top

For full synthetic procedures and characterization data see Pedersen et al. (2009). To a solution of 2,3-O-isopropylidene-2-C-phenyl-erythrono-1,4-lactone (159 mg, 0.68 mmol) in MeOH (10 ml) was added activated 50 W Dowex X8 resin (~ 1 g), and the mixture was stirred at 343 K until complete by TLC (~2–3 days). The reaction was allowed to cool and then filtered to remove the Dowex. The methanol was removed under reduced pressure and the residue was purified by flash chromatography to furnish (I) (115 mg, 87%) as a colourless solid. The pure material was recrystallized from a small amount of dichloromethane which was allowed to slowly evaporate at ambient temperature producing colourless prisms, m.pt. 381–382 K

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O–bound H-atoms were located in a difference Fourier map and refined with O–H restraints of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Supramolecular chain formation along the a axis in (I) mediated by O—H···O hydrogen bonds (orange dashed lines).
[Figure 3] Fig. 3. View in projection along the a axis in (I) showing the C—H···O contacts (blue dashed lines) linking the supramolecular chains (aligned along a) stabilized by O—H···O hydrogen bonds (orange dashed lines).
3,4-dihydroxy-3-phenylfuran-2-one top
Crystal data top
C10H10O4F(000) = 408
Mr = 194.18Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3641 reflections
a = 6.485 (2) Åθ = 2.2–27.5°
b = 7.324 (3) ŵ = 0.11 mm1
c = 18.962 (7) ÅT = 173 K
β = 99.378 (7)°Block, colourless
V = 888.6 (5) Å30.50 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
1834 independent reflections
Radiation source: fine-focus sealed tube1818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 87
Tmin = 0.778, Tmax = 1.000k = 99
21683 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.2568P]
where P = (Fo2 + 2Fc2)/3
1834 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H10O4V = 888.6 (5) Å3
Mr = 194.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.485 (2) ŵ = 0.11 mm1
b = 7.324 (3) ÅT = 173 K
c = 18.962 (7) Å0.50 × 0.20 × 0.20 mm
β = 99.378 (7)°
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
1834 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1818 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 1.000Rint = 0.028
21683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.21Δρmax = 0.28 e Å3
1834 reflectionsΔρmin = 0.27 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00052 (16)0.88359 (15)0.43151 (5)0.0315 (3)
O20.14194 (16)0.60605 (17)0.42959 (6)0.0353 (3)
O30.27440 (16)0.46977 (14)0.44174 (5)0.0274 (3)
H3O0.23120.46530.48110.041*
O40.39267 (17)0.77862 (15)0.52318 (5)0.0299 (3)
H4O0.47780.69200.53210.045*
C20.0052 (2)0.7033 (2)0.42422 (7)0.0260 (3)
C30.2212 (2)0.64295 (18)0.41109 (7)0.0224 (3)
C40.3562 (2)0.80116 (19)0.44799 (7)0.0242 (3)
H40.48860.81820.42820.029*
C50.2076 (2)0.9607 (2)0.43117 (8)0.0292 (3)
H5A0.23861.05740.46780.035*
H5B0.21831.01320.38380.035*
C310.2337 (2)0.63650 (18)0.33154 (7)0.0229 (3)
C320.4037 (2)0.5486 (2)0.31027 (8)0.0287 (3)
H320.50470.49000.34480.034*
C330.4263 (3)0.5462 (2)0.23878 (8)0.0336 (4)
H330.54120.48390.22450.040*
C340.2823 (3)0.6341 (2)0.18799 (8)0.0323 (4)
H340.29930.63360.13920.039*
C350.1141 (3)0.7223 (2)0.20881 (8)0.0313 (4)
H350.01550.78330.17420.038*
C360.0879 (2)0.72227 (19)0.28042 (8)0.0272 (3)
H360.02990.78110.29420.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0283 (6)0.0361 (6)0.0304 (6)0.0074 (4)0.0055 (4)0.0040 (4)
O20.0265 (6)0.0529 (7)0.0274 (5)0.0055 (5)0.0068 (4)0.0059 (5)
O30.0346 (6)0.0268 (5)0.0221 (5)0.0030 (4)0.0078 (4)0.0050 (4)
O40.0351 (6)0.0355 (6)0.0185 (5)0.0059 (4)0.0027 (4)0.0025 (4)
C20.0261 (7)0.0363 (8)0.0158 (6)0.0018 (5)0.0039 (5)0.0016 (5)
C30.0239 (7)0.0248 (7)0.0189 (6)0.0020 (5)0.0043 (5)0.0020 (5)
C40.0263 (7)0.0280 (7)0.0187 (6)0.0006 (5)0.0048 (5)0.0012 (5)
C50.0326 (8)0.0270 (7)0.0277 (7)0.0011 (6)0.0040 (6)0.0018 (5)
C310.0267 (7)0.0230 (6)0.0192 (6)0.0029 (5)0.0048 (5)0.0007 (5)
C320.0299 (7)0.0326 (7)0.0242 (7)0.0030 (6)0.0060 (5)0.0000 (5)
C330.0372 (8)0.0382 (8)0.0281 (7)0.0002 (6)0.0131 (6)0.0041 (6)
C340.0471 (9)0.0314 (7)0.0199 (6)0.0079 (6)0.0100 (6)0.0030 (5)
C350.0417 (9)0.0281 (7)0.0218 (7)0.0011 (6)0.0015 (6)0.0024 (5)
C360.0302 (7)0.0273 (7)0.0236 (7)0.0019 (5)0.0027 (5)0.0007 (5)
Geometric parameters (Å, º) top
O1—C21.3286 (19)C5—H5B0.9900
O1—C51.4639 (19)C31—C361.389 (2)
O2—C21.2085 (18)C31—C321.392 (2)
O3—C31.4142 (16)C32—C331.387 (2)
O3—H3O0.8400C32—H320.9500
O4—C41.4164 (16)C33—C341.386 (2)
O4—H4O0.8401C33—H330.9500
C2—C31.5275 (19)C34—C351.379 (2)
C3—C311.5243 (18)C34—H340.9500
C3—C41.5486 (19)C35—C361.396 (2)
C4—C51.515 (2)C35—H350.9500
C4—H41.0000C36—H360.9500
C5—H5A0.9900
C2—O1—C5109.94 (11)O1—C5—H5B110.8
C3—O3—H3O107.8C4—C5—H5B110.8
C4—O4—H4O106.6H5A—C5—H5B108.8
O2—C2—O1122.75 (13)C36—C31—C32119.22 (13)
O2—C2—C3126.94 (14)C36—C31—C3122.46 (12)
O1—C2—C3110.28 (12)C32—C31—C3118.24 (12)
O3—C3—C31109.28 (10)C33—C32—C31120.24 (14)
O3—C3—C2111.18 (11)C33—C32—H32119.9
C31—C3—C2111.60 (10)C31—C32—H32119.9
O3—C3—C4113.78 (11)C34—C33—C32120.46 (14)
C31—C3—C4110.68 (10)C34—C33—H33119.8
C2—C3—C4100.11 (11)C32—C33—H33119.8
O4—C4—C5107.35 (11)C35—C34—C33119.55 (13)
O4—C4—C3110.92 (11)C35—C34—H34120.2
C5—C4—C3100.87 (11)C33—C34—H34120.2
O4—C4—H4112.3C34—C35—C36120.39 (14)
C5—C4—H4112.3C34—C35—H35119.8
C3—C4—H4112.3C36—C35—H35119.8
O1—C5—C4104.89 (11)C31—C36—C35120.14 (14)
O1—C5—H5A110.8C31—C36—H36119.9
C4—C5—H5A110.8C35—C36—H36119.9
C5—O1—C2—O2172.88 (12)C3—C4—C5—O133.83 (13)
C5—O1—C2—C35.30 (14)O3—C3—C31—C36139.75 (13)
O2—C2—C3—O331.23 (18)C2—C3—C31—C3616.37 (18)
O1—C2—C3—O3146.85 (11)C4—C3—C31—C3694.19 (15)
O2—C2—C3—C3191.06 (16)O3—C3—C31—C3243.46 (16)
O1—C2—C3—C3190.86 (13)C2—C3—C31—C32166.83 (12)
O2—C2—C3—C4151.79 (13)C4—C3—C31—C3282.61 (15)
O1—C2—C3—C426.29 (13)C36—C31—C32—C330.3 (2)
O3—C3—C4—O440.31 (15)C3—C31—C32—C33177.20 (13)
C31—C3—C4—O4163.81 (11)C31—C32—C33—C341.2 (2)
C2—C3—C4—O478.35 (12)C32—C33—C34—C350.9 (2)
O3—C3—C4—C5153.79 (11)C33—C34—C35—C360.4 (2)
C31—C3—C4—C582.71 (13)C32—C31—C36—C351.0 (2)
C2—C3—C4—C535.13 (12)C3—C31—C36—C35175.79 (12)
C2—O1—C5—C418.85 (14)C34—C35—C36—C311.3 (2)
O4—C4—C5—O182.33 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.841.952.7717 (19)167
O4—H4o···O3ii0.841.992.8188 (19)168
C34—H34···O4iii0.952.463.379 (2)164
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H10O4
Mr194.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.485 (2), 7.324 (3), 18.962 (7)
β (°) 99.378 (7)
V3)888.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerRigaku AFC12κ/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.778, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21683, 1834, 1818
Rint0.028
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.128, 1.21
No. of reflections1834
No. of parameters133
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.841.952.7717 (19)167
O4—H4o···O3ii0.841.992.8188 (19)168
C34—H34···O4iii0.952.463.379 (2)164
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: dennis.taylor@adelaide.edu.au.

Acknowledgements

We are grateful to the Australian Research Council for financial support. TVR thanks the Commonwealth Government of Australia for a postgraduate scholarship.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGogoi, S. & Argade, N. P. (2004). Tetrahedron, 60, 9093–9097.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKoumbis, A. E., Kaitaidis, A. D. & Kotoulas, S. S. (2006). Tetrahedron Lett. 47, 8479–8481.  Web of Science CrossRef CAS Google Scholar
First citationPedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400–4403.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRobinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093–5096.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236–7244.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUeda, M., Sohtome, Y., Ueda, K. & Yamamura, S. (2001). Tetrahedron Lett. 42, 3109–3111.  Web of Science CrossRef CAS Google Scholar
First citationValente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 274–282.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds