organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-O-Iso­propyl­­idene-3-C-phenyl­erythro­furan­ose

aDiscipline of Chemistry, University of Adelaide, 5005 South Australia, Australia, bDiscipline of Wine and Horticulture, University of Adelaide, Waite Campus, Glen, Osmond 5064, South Australia, Australia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 November 2009; accepted 15 November 2009; online 21 November 2009)

The title compound, C13H16O, comprises two fused five-membered rings. Each ring has an envelope conformation, with the ether O atom in the furan­ose ring, and the CMe2 atom in the acetonide ring as the flap atoms. In the crystal, centrosymmetrically related mol­ecules associate via hydr­oxy–ether O—H⋯O hydrogen bonds and the resulting dimers are linked into a supra­molecular chain with a flattened topology via C—H⋯Ohydr­oxy contacts, and aligned in the a-axis direction.

Related literature

For the relevance and chemistry of systems related to the title compound, see: Pedersen et al. (2009[Pedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400-4403.]); Robinson et al. (2006[Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236-7244.], 2009[Robinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093-5096.]); Valente et al. (2009[Valente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 274-282.]). For the reactions of Co(II) complexes with endoperoxides, see: Boyd et al. (1980[Boyd, J. D., Foote, C. S. & Imagawa, D. K. (1980). J. Am. Chem. Soc. 102, 3641-3642.]); Sutbeyaz et al. (1988[Sutbeyaz, Y., Secen, H. & Balci, M. (1988). J. Org. Chem. 53, 2312-2317.]); Greatrex et al. (2003[Greatrex, B. W., Jenkins, N. F., Taylor, D. K. & Tiekink, E. R. T. (2003). J. Org. Chem. 68, 5205-5210.]); Greatrex & Taylor (2005[Greatrex, B. W. & Taylor, D. K. (2005). J. Org. Chem. 70, 470-476.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16O4

  • Mr = 236.26

  • Triclinic, [P \overline 1]

  • a = 5.716 (2) Å

  • b = 9.201 (4) Å

  • c = 11.871 (6) Å

  • α = 89.76 (3)°

  • β = 78.72 (2)°

  • γ = 73.70 (2)°

  • V = 586.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.35 × 0.35 × 0.10 mm

Data collection
  • Rigaku AFC12κ/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.773, Tmax = 1.000

  • 14572 measured reflections

  • 2408 independent reflections

  • 2361 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.157

  • S = 1.16

  • 2408 reflections

  • 157 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O1i 0.84 1.93 2.755 (2) 166
C5—H5a⋯O2ii 0.99 2.47 3.296 (3) 140
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x-1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The dihydroxyation of monocyclic and bicyclic 1,2-dioxines has provided a new route for the stereoselective synthesis of a diverse range of carbohydrates and related compounds (Pedersen et al., 2009; Robinson et al., 2006; Robinson et al., 2009; Valente et al., 2009). During the course of these studies, the title compound, (I), was obtained by the Co(II)-mediated ring-opening of the precursor 1,2-dioxane, post dihydroxyation. The reactions of Co(II) complexes with endoperoxides have been well documented (Boyd et al., 1980; Sutbeyaz et al., 1988; Greatrex et al., 2003; Greatrex & Taylor, 2005).

The molecular structure of (I), Fig. 1, comprises two fused five-membered rings linked at the C3—C4 bond. Each of the five-membered rings adopts an envelope conformation, on atom O1 for the furanose (O1, C2—C5) ring, and on atom C6 for the acetonide (O3, O4, C3, C4, C6) ring. When viewed down the C3—C4 axis, the O1 atom lies above the plane through the four remaining atoms, away from the phenyl substituent and the C6 atom lies below the plane, being orientated in the same direction as the phenyl ring. In the crystal structure centrosymmetrically related pairs of molecules associate via O—H···O hydrogen bonds to form an eight-membered {···OCOH}2 synthon, Table 1 and Fig. 2. The dimers are linked into a supramolecular chain via C—H···O contacts and ten-membered {···OH···OCH}2 synthons, Table 1. The resulting chain comprising alternating eight- and ten-membered synthons has a flattened topology, Fig. 2, and is aligned along the a axis.

Related literature top

For the relevance and chemistry of systems related to the title compound, see: Pedersen et al. (2009); Robinson et al. (2006, 2009); Valente et al. (2009). For the reactions of Co(II) complexes with endoperoxides, see: Boyd et al. (1980); Sutbeyaz et al. (1988); Greatrex et al. (2003); Greatrex & Taylor (2005).

Experimental top

For full synthetic procedures and characterization data see Pedersen et al. (2009) and Robinson et al. (2009). To a stirred solution of Co(salen)2 (17 mg, 0.05 mmol) in THF (5 ml) at ambient temperature was added (3aR,7aS)-3a-phenyl-tetrahydro-2,2-dimethyl-[1,3]dioxolo[4,5-d][1,2]dioxine (501 mg, 2.12 mmol), and the reaction left to stir until complete by TLC (~16 h). All volatiles were removed in vacuo giving a crude mixture of regioisomers in a 40:60 ratio. The isomers were fully separated by flash chromatography giving a combined total yield of 496 mg (99%). Compound (I) was isolated as a colourless solid (198 mg), and the pure material was recrystallized from a slowly evaporating 1:1 mixture of dichloromethane/heptane to give colourless prisms, m. pt. 424–425 K. The compound was found to exist solely in its cyclic hemi-acetal form(s) both as a solid indicated by IR (absence of carbonyl signal), and in CDCl3 solution which revealed a 90:10 ratio of anomers.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O–bound H-atom was located in a difference Fourier map and was refined with an O–H restraint of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Supramolecular chain formation along the a axis in (I) mediated by O—H···O hydrogen bonds (orange dashed lines) and C—H···O contacts (blue dashed lines).
2,3-O-Isopropylidene-3-C-phenylerythrofuranose top
Crystal data top
C13H16O4Z = 2
Mr = 236.26F(000) = 252
Triclinic, P1Dx = 1.337 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 5.716 (2) ÅCell parameters from 2428 reflections
b = 9.201 (4) Åθ = 3.5–27.5°
c = 11.871 (6) ŵ = 0.10 mm1
α = 89.76 (3)°T = 173 K
β = 78.72 (2)°Prism, pale-yellow
γ = 73.70 (2)°0.35 × 0.35 × 0.10 mm
V = 586.9 (4) Å3
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
2408 independent reflections
Radiation source: fine-focus sealed tube2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 77
Tmin = 0.773, Tmax = 1.000k = 1011
14572 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0929P)2 + 0.1356P]
where P = (Fo2 + 2Fc2)/3
2408 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C13H16O4γ = 73.70 (2)°
Mr = 236.26V = 586.9 (4) Å3
Triclinic, P1Z = 2
a = 5.716 (2) ÅMo Kα radiation
b = 9.201 (4) ŵ = 0.10 mm1
c = 11.871 (6) ÅT = 173 K
α = 89.76 (3)°0.35 × 0.35 × 0.10 mm
β = 78.72 (2)°
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
2408 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2361 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 1.000Rint = 0.030
14572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.157H-atom parameters constrained
S = 1.16Δρmax = 0.27 e Å3
2408 reflectionsΔρmin = 0.25 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11375 (18)0.89747 (11)0.40885 (9)0.0294 (3)
O20.29860 (19)0.86868 (13)0.42473 (9)0.0335 (3)
H2O0.26830.93940.47470.050*
O30.1029 (2)0.87393 (12)0.15795 (9)0.0321 (3)
O40.09610 (17)0.69527 (11)0.20274 (8)0.0270 (3)
C20.1242 (3)0.91139 (17)0.35425 (12)0.0281 (3)
H20.11021.01700.32960.034*
C30.2058 (3)0.79968 (16)0.25019 (12)0.0264 (3)
H30.39050.75480.22910.032*
C40.0642 (2)0.67820 (16)0.28391 (11)0.0248 (3)
C50.0944 (3)0.73843 (16)0.40319 (12)0.0273 (3)
H5A0.26120.72260.41200.033*
H5B0.01300.68640.46450.033*
C60.0013 (3)0.77251 (17)0.10732 (12)0.0300 (4)
C410.2235 (2)0.51612 (16)0.28472 (12)0.0263 (3)
C420.4230 (3)0.48304 (18)0.34152 (13)0.0322 (4)
H420.46200.56300.37720.039*
C430.5645 (3)0.33463 (19)0.34623 (15)0.0380 (4)
H430.70000.31350.38490.046*
C440.5092 (3)0.21693 (18)0.29478 (14)0.0378 (4)
H440.60590.11510.29820.045*
C450.3115 (3)0.24891 (18)0.23827 (13)0.0362 (4)
H450.27350.16860.20250.043*
C460.1683 (3)0.39770 (17)0.23361 (12)0.0307 (4)
H460.03230.41840.19530.037*
C610.1984 (3)0.6632 (2)0.02004 (14)0.0398 (4)
H61A0.12520.59420.01410.060*
H61B0.32940.60450.05820.060*
H61C0.27010.72020.04050.060*
C620.2175 (3)0.8637 (2)0.05769 (14)0.0397 (4)
H62A0.28980.79480.02290.060*
H62B0.15910.92760.00110.060*
H62C0.34390.92790.11910.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (5)0.0272 (6)0.0334 (6)0.0055 (4)0.0032 (4)0.0028 (4)
O20.0280 (6)0.0361 (6)0.0352 (6)0.0045 (4)0.0103 (4)0.0069 (4)
O30.0409 (6)0.0306 (6)0.0301 (6)0.0151 (5)0.0124 (4)0.0082 (4)
O40.0261 (5)0.0309 (6)0.0258 (5)0.0093 (4)0.0082 (4)0.0054 (4)
C20.0248 (7)0.0279 (7)0.0316 (7)0.0071 (5)0.0062 (5)0.0009 (6)
C30.0258 (7)0.0266 (7)0.0272 (7)0.0083 (5)0.0051 (5)0.0028 (5)
C40.0236 (7)0.0282 (8)0.0237 (7)0.0080 (5)0.0066 (5)0.0025 (5)
C50.0258 (7)0.0279 (8)0.0274 (7)0.0071 (5)0.0042 (5)0.0014 (5)
C60.0343 (8)0.0326 (8)0.0258 (7)0.0128 (6)0.0079 (6)0.0056 (6)
C410.0265 (7)0.0271 (8)0.0243 (6)0.0075 (6)0.0030 (5)0.0025 (5)
C420.0308 (8)0.0308 (8)0.0358 (8)0.0077 (6)0.0105 (6)0.0022 (6)
C430.0332 (8)0.0367 (9)0.0420 (9)0.0038 (6)0.0114 (7)0.0070 (7)
C440.0419 (9)0.0275 (8)0.0365 (8)0.0006 (6)0.0037 (7)0.0053 (6)
C450.0479 (9)0.0276 (8)0.0325 (8)0.0108 (7)0.0065 (7)0.0011 (6)
C460.0347 (8)0.0304 (8)0.0283 (7)0.0102 (6)0.0080 (6)0.0031 (6)
C610.0430 (9)0.0468 (10)0.0281 (8)0.0141 (7)0.0015 (6)0.0018 (7)
C620.0437 (9)0.0442 (10)0.0355 (8)0.0130 (7)0.0176 (7)0.0125 (7)
Geometric parameters (Å, º) top
O1—C21.4278 (18)C41—C461.388 (2)
O1—C51.4370 (19)C41—C421.397 (2)
O2—C21.3972 (17)C42—C431.385 (2)
O2—H2O0.8400C42—H420.9500
O3—C61.4295 (18)C43—C441.385 (3)
O3—C31.4254 (17)C43—H430.9500
O4—C61.4323 (18)C44—C451.386 (2)
O4—C41.4339 (16)C44—H440.9500
C2—C31.522 (2)C45—C461.391 (2)
C2—H21.0000C45—H450.9500
C3—C41.563 (2)C46—H460.9500
C3—H31.0000C61—H61A0.9800
C4—C411.515 (2)C61—H61B0.9800
C4—C51.535 (2)C61—H61C0.9800
C5—H5A0.9900C62—H62A0.9800
C5—H5B0.9900C62—H62B0.9800
C6—C621.509 (2)C62—H62C0.9800
C6—C611.513 (2)
C2—O1—C5106.30 (11)O4—C6—C61111.43 (13)
C2—O2—H2O107.7C62—C6—C61113.45 (14)
C6—O3—C3107.42 (11)C46—C41—C42118.91 (14)
C6—O4—C4108.29 (10)C46—C41—C4120.93 (13)
O2—C2—O1111.99 (12)C42—C41—C4120.10 (13)
O2—C2—C3108.35 (12)C43—C42—C41120.58 (15)
O1—C2—C3104.47 (11)C43—C42—H42119.7
O2—C2—H2110.6C41—C42—H42119.7
O1—C2—H2110.6C44—C43—C42120.26 (15)
C3—C2—H2110.6C44—C43—H43119.9
O3—C3—C2108.22 (12)C42—C43—H43119.9
O3—C3—C4104.64 (11)C43—C44—C45119.46 (15)
C2—C3—C4104.60 (11)C43—C44—H44120.3
O3—C3—H3112.9C45—C44—H44120.3
C2—C3—H3112.9C46—C45—C44120.51 (15)
C4—C3—H3112.9C46—C45—H45119.7
O4—C4—C41112.22 (11)C44—C45—H45119.7
O4—C4—C5108.90 (11)C45—C46—C41120.27 (14)
C41—C4—C5112.12 (12)C45—C46—H46119.9
O4—C4—C3103.36 (10)C41—C46—H46119.9
C41—C4—C3116.44 (11)C6—C61—H61A109.5
C5—C4—C3102.99 (11)C6—C61—H61B109.5
O1—C5—C4105.33 (11)H61A—C61—H61B109.5
O1—C5—H5A110.7C6—C61—H61C109.5
C4—C5—H5A110.7H61A—C61—H61C109.5
O1—C5—H5B110.7H61B—C61—H61C109.5
C4—C5—H5B110.7C6—C62—H62A109.5
H5A—C5—H5B108.8C6—C62—H62B109.5
O3—C6—O4104.00 (11)H62A—C62—H62B109.5
O3—C6—C62109.07 (13)C6—C62—H62C109.5
O4—C6—C62108.34 (12)H62A—C62—H62C109.5
O3—C6—C61110.10 (13)H62B—C62—H62C109.5
C5—O1—C2—O276.45 (14)C3—O3—C6—O434.96 (14)
C5—O1—C2—C340.60 (13)C3—O3—C6—C62150.39 (12)
C6—O3—C3—C2133.84 (12)C3—O3—C6—C6184.52 (14)
C6—O3—C3—C422.73 (13)C4—O4—C6—O333.70 (14)
O2—C2—C3—O3154.79 (11)C4—O4—C6—C62149.65 (13)
O1—C2—C3—O385.67 (13)C4—O4—C6—C6184.87 (14)
O2—C2—C3—C494.07 (13)O4—C4—C41—C4614.92 (18)
O1—C2—C3—C425.47 (13)C5—C4—C41—C46108.02 (15)
C6—O4—C4—C41107.03 (13)C3—C4—C41—C46133.74 (14)
C6—O4—C4—C5128.23 (12)O4—C4—C41—C42167.76 (12)
C6—O4—C4—C319.23 (13)C5—C4—C41—C4269.29 (16)
O3—C3—C4—O42.14 (13)C3—C4—C41—C4248.95 (18)
C2—C3—C4—O4115.84 (12)C46—C41—C42—C430.4 (2)
O3—C3—C4—C41125.66 (12)C4—C41—C42—C43177.73 (13)
C2—C3—C4—C41120.64 (13)C41—C42—C43—C440.2 (2)
O3—C3—C4—C5111.22 (12)C42—C43—C44—C450.2 (2)
C2—C3—C4—C52.48 (13)C43—C44—C45—C460.4 (2)
C2—O1—C5—C439.18 (13)C44—C45—C46—C410.6 (2)
O4—C4—C5—O188.03 (13)C42—C41—C46—C450.6 (2)
C41—C4—C5—O1147.17 (11)C4—C41—C46—C45177.92 (13)
C3—C4—C5—O121.22 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O1i0.841.932.755 (2)166
C5—H5a···O2ii0.992.473.296 (3)140
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H16O4
Mr236.26
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.716 (2), 9.201 (4), 11.871 (6)
α, β, γ (°)89.76 (3), 78.72 (2), 73.70 (2)
V3)586.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.35 × 0.10
Data collection
DiffractometerRigaku AFC12κ/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.773, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14572, 2408, 2361
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.157, 1.16
No. of reflections2408
No. of parameters157
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O1i0.841.932.755 (2)166
C5—H5a···O2ii0.992.473.296 (3)140
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: dennis.taylor@adelaide.edu.au.

Acknowledgements

We are grateful to the Australian Research Council for financial support. TVR thanks the Commonwealth Government of Australia for a postgraduate scholarship.

References

First citationBoyd, J. D., Foote, C. S. & Imagawa, D. K. (1980). J. Am. Chem. Soc. 102, 3641–3642.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGreatrex, B. W., Jenkins, N. F., Taylor, D. K. & Tiekink, E. R. T. (2003). J. Org. Chem. 68, 5205–5210.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGreatrex, B. W. & Taylor, D. K. (2005). J. Org. Chem. 70, 470–476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationPedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400–4403.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRobinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093–5096.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236–7244.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutbeyaz, Y., Secen, H. & Balci, M. (1988). J. Org. Chem. 53, 2312–2317.  CrossRef CAS Web of Science Google Scholar
First citationValente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 274–282.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds