metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-N-(2-Chloro­phen­yl)-O-ethyl­thio­carbamato-κS](tri­phenyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 November 2009; accepted 19 November 2009; online 25 November 2009)

The title compound, [Au(C9H9ClNOS)(C18H15P)], features a linear S,P-donor set with a small deviation from the ideal linear geometry due to the proximity of the meth­oxy O atom to Au [Au⋯O = 2.986 (4) Å].

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C9H9ClNOS)(C18H15P)]

  • Mr = 673.92

  • Monoclinic, P 21 /n

  • a = 8.8401 (5) Å

  • b = 26.0187 (14) Å

  • c = 10.8595 (6) Å

  • β = 94.850 (1)°

  • V = 2488.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.19 mm−1

  • T = 223 K

  • 0.32 × 0.16 × 0.02 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.410, Tmax = 1

  • 17516 measured reflections

  • 5712 independent reflections

  • 4803 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.102

  • S = 1.03

  • 5712 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 1.69 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au—S1 2.3131 (11)
Au—P1 2.2574 (11)
S1—Au—P1 177.45 (4)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

As a part of systematic studies of phosphinegold(I) thiocarbamides (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), the title compound, (C5H5)3PAu[SC(OEt)N(C6H4Cl-o)], was synthesized, (I). In (I), Fig. 1, the thiocarbamide functions as a thiolate ligand, a conclusion confirmed by the magnitudes of the C1—S1 and C1N1 bond distances of 1.759 (5) and 1.265 (6) Å, respectively; the conformation about C1N1 is Z. A twist is evident between the central SC(O)N chromophore (maximum deviation = 0.021 (5) Å for the C1 atom) and the N-bound aryl ring as seen in the C1–N1–C2–C3 torsion angle of -133.7 (5)°. The thiocarbamato and phosphine ligands define an S, P donor set, Table 1. The deviation of the S1—Au—P1 angle [177.45 (4) °] from linearity is ascribed to the close approach of the O1 atom to Au [2.986 (4) Å].

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Ph3AuCl and EtOC(S)N(H)(C6H4Cl-o) in the presence of base (Hall et al., 1993).

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). A rotating group model was used for the methyl groups. The maximum and minimum residual electron density peaks of 1.69 and 0.98 e Å-3, respectively, were located 0.83 Å and 1.47 Å from the Au atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[(Z)-N-(2-Chlorophenyl)-O-ethylthiocarbamato- κS](triphenylphosphine-κP)gold(I) top
Crystal data top
[Au(C9H9ClNOS)(C18H15P)]F(000) = 1312
Mr = 673.92Dx = 1.799 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 5468 reflections
a = 8.8401 (5) Åθ = 2.5–28.2°
b = 26.0187 (14) ŵ = 6.19 mm1
c = 10.8595 (6) ÅT = 223 K
β = 94.850 (1)°Plate, colourless
V = 2488.8 (2) Å30.32 × 0.16 × 0.02 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
5712 independent reflections
Radiation source: fine-focus sealed tube4803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 911
Tmin = 0.410, Tmax = 1k = 3332
17516 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0543P)2]
where P = (Fo2 + 2Fc2)/3
5712 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 1.69 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Au(C9H9ClNOS)(C18H15P)]V = 2488.8 (2) Å3
Mr = 673.92Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8401 (5) ŵ = 6.19 mm1
b = 26.0187 (14) ÅT = 223 K
c = 10.8595 (6) Å0.32 × 0.16 × 0.02 mm
β = 94.850 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5712 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4803 reflections with I > 2σ(I)
Tmin = 0.410, Tmax = 1Rint = 0.049
17516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 1.69 e Å3
5712 reflectionsΔρmin = 0.98 e Å3
298 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.239069 (19)0.104287 (7)0.092536 (15)0.03276 (8)
Cl10.91579 (15)0.17981 (6)0.11081 (11)0.0464 (3)
S10.36556 (14)0.14702 (5)0.05484 (10)0.0355 (3)
P10.12476 (13)0.06311 (5)0.24242 (10)0.0306 (3)
O10.5141 (4)0.16861 (14)0.1570 (3)0.0367 (8)
N10.6231 (5)0.20353 (17)0.0042 (4)0.0376 (9)
C10.5152 (5)0.1776 (2)0.0337 (4)0.0344 (10)
C20.6273 (5)0.2179 (2)0.1288 (4)0.0351 (10)
C30.7614 (5)0.21131 (19)0.1871 (4)0.0337 (10)
C40.7746 (6)0.2294 (2)0.3057 (4)0.0405 (11)
H40.86580.22460.34290.049*
C50.6550 (6)0.2542 (2)0.3693 (5)0.0429 (12)
H50.66350.26630.45000.051*
C60.5227 (6)0.2612 (2)0.3132 (5)0.0440 (12)
H60.44030.27810.35630.053*
C70.5093 (6)0.2439 (2)0.1948 (5)0.0418 (12)
H70.41840.24970.15790.050*
C80.6417 (6)0.1891 (2)0.2348 (5)0.0462 (13)
H8A0.63780.22670.23480.055*
H8B0.73730.17840.20290.055*
C90.6343 (8)0.1697 (3)0.3603 (5)0.073 (2)
H9A0.72010.18260.41280.110*
H9B0.63710.13240.35950.110*
H9C0.54060.18110.39210.110*
C100.2264 (5)0.00525 (19)0.2929 (4)0.0328 (10)
C110.2483 (6)0.0325 (2)0.2058 (5)0.0456 (13)
H110.20940.02760.12330.055*
C120.3266 (7)0.0772 (2)0.2384 (6)0.0520 (14)
H120.33980.10250.17840.062*
C130.3852 (7)0.0848 (2)0.3588 (7)0.0558 (16)
H130.43910.11500.38090.067*
C140.3644 (6)0.0479 (2)0.4462 (6)0.0526 (15)
H140.40270.05320.52860.063*
C150.2867 (6)0.0026 (2)0.4131 (5)0.0442 (13)
H150.27520.02280.47320.053*
C160.1206 (6)0.10257 (17)0.3797 (4)0.0319 (10)
C170.2334 (6)0.1390 (2)0.4037 (5)0.0439 (12)
H170.30340.14500.34480.053*
C180.2451 (7)0.1666 (2)0.5129 (5)0.0498 (14)
H180.32290.19100.52850.060*
C190.1414 (7)0.1580 (2)0.5989 (5)0.0465 (13)
H190.14980.17600.67420.056*
C200.0255 (7)0.1231 (2)0.5749 (5)0.0465 (13)
H200.04740.11840.63200.056*
C210.0165 (7)0.0948 (2)0.4661 (5)0.0443 (13)
H210.06070.07020.45110.053*
C220.0695 (5)0.04190 (18)0.2042 (4)0.0311 (9)
C230.1225 (6)0.0036 (2)0.2526 (5)0.0455 (13)
H230.05650.02450.30320.055*
C240.2714 (6)0.0178 (3)0.2264 (5)0.0538 (15)
H240.30720.04850.25950.065*
C250.3683 (6)0.0124 (3)0.1522 (5)0.0506 (14)
H250.47000.00250.13460.061*
C260.3165 (6)0.0573 (2)0.1034 (5)0.0472 (13)
H260.38310.07810.05310.057*
C270.1665 (6)0.0718 (2)0.1284 (5)0.0389 (11)
H270.13070.10210.09370.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03321 (12)0.03459 (13)0.03128 (12)0.00426 (7)0.00752 (8)0.00257 (7)
Cl10.0390 (6)0.0635 (9)0.0364 (6)0.0048 (6)0.0010 (5)0.0004 (6)
S10.0370 (6)0.0421 (7)0.0278 (5)0.0071 (5)0.0054 (4)0.0029 (5)
P10.0301 (6)0.0316 (6)0.0307 (5)0.0039 (5)0.0064 (5)0.0022 (5)
O10.0388 (18)0.043 (2)0.0284 (15)0.0089 (15)0.0051 (14)0.0008 (14)
N10.038 (2)0.041 (2)0.0341 (19)0.0061 (18)0.0068 (17)0.0066 (18)
C10.036 (2)0.040 (3)0.028 (2)0.001 (2)0.0068 (19)0.001 (2)
C20.036 (2)0.038 (3)0.032 (2)0.006 (2)0.0055 (19)0.006 (2)
C30.031 (2)0.036 (3)0.034 (2)0.0022 (19)0.0021 (18)0.002 (2)
C40.043 (3)0.042 (3)0.039 (2)0.007 (2)0.010 (2)0.001 (2)
C50.053 (3)0.039 (3)0.037 (2)0.005 (2)0.004 (2)0.008 (2)
C60.052 (3)0.035 (3)0.045 (3)0.002 (2)0.005 (2)0.013 (2)
C70.040 (3)0.037 (3)0.050 (3)0.000 (2)0.011 (2)0.011 (2)
C80.049 (3)0.050 (3)0.038 (3)0.011 (3)0.003 (2)0.002 (2)
C90.070 (5)0.110 (6)0.040 (3)0.031 (4)0.003 (3)0.007 (4)
C100.028 (2)0.033 (3)0.037 (2)0.0068 (18)0.0070 (18)0.001 (2)
C110.049 (3)0.045 (3)0.043 (3)0.002 (2)0.010 (2)0.004 (2)
C120.056 (3)0.029 (3)0.074 (4)0.000 (2)0.025 (3)0.002 (3)
C130.040 (3)0.041 (3)0.087 (5)0.004 (2)0.008 (3)0.016 (3)
C140.046 (3)0.049 (4)0.060 (3)0.003 (3)0.009 (3)0.018 (3)
C150.047 (3)0.040 (3)0.045 (3)0.007 (2)0.002 (2)0.002 (2)
C160.036 (2)0.028 (2)0.033 (2)0.0018 (18)0.0050 (19)0.0028 (18)
C170.045 (3)0.041 (3)0.047 (3)0.012 (2)0.010 (2)0.006 (2)
C180.051 (3)0.046 (3)0.053 (3)0.012 (3)0.004 (3)0.015 (3)
C190.057 (3)0.041 (3)0.042 (3)0.010 (3)0.006 (2)0.008 (2)
C200.059 (3)0.041 (3)0.043 (3)0.002 (3)0.024 (3)0.000 (2)
C210.048 (3)0.042 (3)0.045 (3)0.007 (2)0.018 (2)0.000 (2)
C220.030 (2)0.031 (2)0.033 (2)0.0043 (18)0.0058 (18)0.0025 (19)
C230.039 (3)0.045 (3)0.052 (3)0.011 (2)0.002 (2)0.011 (3)
C240.046 (3)0.055 (4)0.060 (3)0.020 (3)0.001 (3)0.011 (3)
C250.031 (3)0.068 (4)0.053 (3)0.008 (3)0.003 (2)0.012 (3)
C260.040 (3)0.052 (3)0.048 (3)0.011 (3)0.005 (2)0.002 (3)
C270.040 (3)0.036 (3)0.040 (2)0.005 (2)0.003 (2)0.000 (2)
Geometric parameters (Å, º) top
Au—S12.3131 (11)C11—H110.9400
Au—P12.2574 (11)C12—C131.379 (9)
Cl1—C31.740 (5)C12—H120.9400
S1—C11.759 (5)C13—C141.372 (9)
P1—C161.813 (5)C13—H130.9400
P1—C101.814 (5)C14—C151.396 (8)
P1—C221.818 (5)C14—H140.9400
O1—C11.360 (5)C15—H150.9400
O1—C81.453 (6)C16—C171.384 (7)
N1—C11.265 (6)C16—C211.384 (7)
N1—C21.407 (6)C17—C181.383 (7)
C2—C71.391 (7)C17—H170.9400
C2—C31.401 (6)C18—C191.382 (8)
C3—C41.385 (7)C18—H180.9400
C4—C51.375 (7)C19—C201.377 (8)
C4—H40.9400C19—H190.9400
C5—C61.376 (7)C20—C211.388 (8)
C5—H50.9400C20—H200.9400
C6—C71.377 (7)C21—H210.9400
C6—H60.9400C22—C271.378 (7)
C7—H70.9400C22—C231.392 (7)
C8—C91.460 (7)C23—C241.374 (7)
C8—H8A0.9800C23—H230.9400
C8—H8B0.9800C24—C251.374 (8)
C9—H9A0.9700C24—H240.9400
C9—H9B0.9700C25—C261.376 (9)
C9—H9C0.9700C25—H250.9400
C10—C151.383 (7)C26—C271.384 (8)
C10—C111.389 (7)C26—H260.9400
C11—C121.384 (8)C27—H270.9400
S1—Au—P1177.45 (4)C13—C12—C11120.1 (6)
C1—S1—Au102.98 (16)C13—C12—H12120.0
C16—P1—C10105.4 (2)C11—C12—H12120.0
C16—P1—C22106.0 (2)C14—C13—C12119.7 (6)
C10—P1—C22104.5 (2)C14—C13—H13120.2
C16—P1—Au111.44 (16)C12—C13—H13120.2
C10—P1—Au111.79 (15)C13—C14—C15120.3 (5)
C22—P1—Au116.84 (15)C13—C14—H14119.9
C1—O1—C8116.1 (4)C15—C14—H14119.9
C1—N1—C2122.4 (4)C10—C15—C14120.6 (5)
N1—C1—O1118.8 (4)C10—C15—H15119.7
N1—C1—S1128.1 (4)C14—C15—H15119.7
O1—C1—S1113.1 (3)C17—C16—C21118.8 (5)
C7—C2—C3116.9 (4)C17—C16—P1118.6 (4)
C7—C2—N1123.0 (4)C21—C16—P1122.4 (4)
C3—C2—N1119.7 (4)C18—C17—C16121.2 (5)
C4—C3—C2121.4 (5)C18—C17—H17119.4
C4—C3—Cl1118.6 (4)C16—C17—H17119.4
C2—C3—Cl1120.1 (4)C19—C18—C17119.3 (5)
C5—C4—C3120.3 (5)C19—C18—H18120.4
C5—C4—H4119.8C17—C18—H18120.4
C3—C4—H4119.8C20—C19—C18120.3 (5)
C4—C5—C6119.1 (5)C20—C19—H19119.9
C4—C5—H5120.4C18—C19—H19119.9
C6—C5—H5120.4C19—C20—C21120.0 (5)
C5—C6—C7120.9 (5)C19—C20—H20120.0
C5—C6—H6119.6C21—C20—H20120.0
C7—C6—H6119.6C16—C21—C20120.4 (5)
C6—C7—C2121.4 (5)C16—C21—H21119.8
C6—C7—H7119.3C20—C21—H21119.8
C2—C7—H7119.3C27—C22—C23119.6 (4)
O1—C8—C9108.8 (5)C27—C22—P1119.5 (4)
O1—C8—H8A109.9C23—C22—P1120.9 (4)
C9—C8—H8A109.9C24—C23—C22119.9 (5)
O1—C8—H8B109.9C24—C23—H23120.1
C9—C8—H8B109.9C22—C23—H23120.1
H8A—C8—H8B108.3C25—C24—C23120.4 (5)
C8—C9—H9A109.5C25—C24—H24119.8
C8—C9—H9B109.5C23—C24—H24119.8
H9A—C9—H9B109.5C24—C25—C26120.1 (5)
C8—C9—H9C109.5C24—C25—H25120.0
H9A—C9—H9C109.5C26—C25—H25120.0
H9B—C9—H9C109.5C25—C26—C27120.0 (5)
C15—C10—C11118.3 (5)C25—C26—H26120.0
C15—C10—P1123.3 (4)C27—C26—H26120.0
C11—C10—P1118.4 (4)C22—C27—C26120.0 (5)
C12—C11—C10121.1 (5)C22—C27—H27120.0
C12—C11—H11119.5C26—C27—H27120.0
C10—C11—H11119.5
C2—N1—C1—O1175.2 (4)C11—C10—C15—C141.4 (8)
C2—N1—C1—S19.1 (8)P1—C10—C15—C14179.7 (4)
C8—O1—C1—N11.4 (7)C13—C14—C15—C101.6 (9)
C8—O1—C1—S1174.9 (4)C10—P1—C16—C1793.6 (4)
Au—S1—C1—N1175.3 (5)C22—P1—C16—C17155.9 (4)
Au—S1—C1—O10.6 (4)Au—P1—C16—C1727.8 (5)
C1—N1—C2—C753.7 (8)C10—P1—C16—C2181.0 (5)
C1—N1—C2—C3133.7 (5)C22—P1—C16—C2129.5 (5)
C7—C2—C3—C40.8 (7)Au—P1—C16—C21157.6 (4)
N1—C2—C3—C4173.8 (5)C21—C16—C17—C181.3 (8)
C7—C2—C3—Cl1179.3 (4)P1—C16—C17—C18173.5 (4)
N1—C2—C3—Cl16.4 (7)C16—C17—C18—C190.6 (9)
C2—C3—C4—C50.1 (8)C17—C18—C19—C201.4 (9)
Cl1—C3—C4—C5179.7 (4)C18—C19—C20—C212.8 (9)
C3—C4—C5—C60.5 (8)C17—C16—C21—C200.0 (8)
C4—C5—C6—C70.2 (8)P1—C16—C21—C20174.6 (4)
C5—C6—C7—C21.2 (9)C19—C20—C21—C162.0 (9)
C3—C2—C7—C61.5 (8)C16—P1—C22—C2788.7 (4)
N1—C2—C7—C6174.2 (5)C10—P1—C22—C27160.2 (4)
C1—O1—C8—C9171.8 (5)Au—P1—C22—C2736.1 (4)
C16—P1—C10—C151.3 (5)C16—P1—C22—C2389.9 (4)
C22—P1—C10—C15112.8 (4)C10—P1—C22—C2321.1 (5)
Au—P1—C10—C15119.9 (4)Au—P1—C22—C23145.3 (4)
C16—P1—C10—C11179.6 (4)C27—C22—C23—C241.2 (8)
C22—P1—C10—C1168.9 (4)P1—C22—C23—C24177.4 (5)
Au—P1—C10—C1158.4 (4)C22—C23—C24—C250.3 (9)
C15—C10—C11—C120.9 (8)C23—C24—C25—C260.1 (9)
P1—C10—C11—C12179.2 (4)C24—C25—C26—C270.4 (9)
C10—C11—C12—C130.4 (9)C23—C22—C27—C261.7 (8)
C11—C12—C13—C140.5 (9)P1—C22—C27—C26177.0 (4)
C12—C13—C14—C151.1 (9)C25—C26—C27—C221.3 (8)

Experimental details

Crystal data
Chemical formula[Au(C9H9ClNOS)(C18H15P)]
Mr673.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)8.8401 (5), 26.0187 (14), 10.8595 (6)
β (°) 94.850 (1)
V3)2488.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.19
Crystal size (mm)0.32 × 0.16 × 0.02
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.410, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
17516, 5712, 4803
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.03
No. of reflections5712
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.69, 0.98

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Au—S12.3131 (11)Au—P12.2574 (11)
S1—Au—P1177.45 (4)
 

Acknowledgements

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds