metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1648-m1649

Poly[[di­aquadi-μ-dicyanamido-nickel(II)] bis­­(pyridinium-4-olate)]

aCollege of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People's Republic of China
*Correspondence e-mail: zhengll@cqu.edu.cn

(Received 18 October 2009; accepted 17 November 2009; online 21 November 2009)

The title compound, {[Ni(C2N3)2(H2O)2]·2C5H5NO}n, is a centrosymmetric two-dimensional coordination polymer with a layer (4,4) network structure. The asymmetric unit is compossed of an NiII atom, which sits on an inversion center, a μ-1,5-bridging dicyanamide anion, a water mol­ecule, and a free 4-hydroxy­pyridine mol­ecule present in the zwitterionic pyridinium-4-olate form. The NiII atom is coordinated in a slightly distorted N4O2 octa­hedral geometry by four bridging dicyanamide ligands and two trans water mol­ecules. In the crystal, the two-dimensional networks are linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For coordination polymers involving dicyanamide (dca), see: Manson et al. (1998[Manson, J. L., Kmety, C. R., Huang, Q.-Z., Lynn, J. W., Bendele, G. M., Pagola, S., Stephens, P. W., Liable-Sands, L. M., Rheingold, A. L., Epstein, A. J. & Miller, J. S. (1998). Chem. Mater. 10, 2552-2560.], 2001[Manson, J. L., Kmety, C. R., Palacio, F., Epstein, A. J. & Miller, J. S. (2001). Chem. Mater. 13, 1068-1073.]); Batten et al. (1998[Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S., Robson, R. (1998). Chem. Comm. pp. 439-440.]). For nickel(II)–dca complexes, see: Van der Werff et al. (2004[Van der Werff, P. M., Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Cashion, J. D. (2004). Cryst. Growth Des. 4, 503-508.]); Armentano et al. (2006[Armentano, D., De Munno, G., Guerra, F., Julve, M. & Lloret, F. (2006). Inorg. Chem. 45, 4626-4636.]). For dicyanamide complexes with a co-ligand, see: Batten & Murray (2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. pp. 103-130.]); Manson et al. (1998[Manson, J. L., Kmety, C. R., Huang, Q.-Z., Lynn, J. W., Bendele, G. M., Pagola, S., Stephens, P. W., Liable-Sands, L. M., Rheingold, A. L., Epstein, A. J. & Miller, J. S. (1998). Chem. Mater. 10, 2552-2560.], 2001[Manson, J. L., Kmety, C. R., Palacio, F., Epstein, A. J. & Miller, J. S. (2001). Chem. Mater. 13, 1068-1073.]); Miller & Manson (2001[Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563-570.]). For dicyanamide complexes with 4-cyano­pyridine as co-ligand, see: Dalai et al. (2002[Dalai, S., Mukherjee, P. S., Zangrando, E. & Chaudhuri, N. R. (2002). New J. Chem. 26, 1185-1189.]); Du et al. (2006[Du, M., Wang, Q., Wang, Y., Zhao, X.-J. & Ribas, J. (2006). J. Solid State Chem. 179, 3926-3936.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2N3)2(H2O)2]·2C5H5NO

  • Mr = 417.02

  • Monoclinic, P 21 /c

  • a = 7.8598 (6) Å

  • b = 12.8199 (10) Å

  • c = 9.1080 (7) Å

  • β = 96.7530 (10)°

  • V = 911.37 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 293 K

  • 0.23 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.788, Tmax = 0.848

  • 6950 measured reflections

  • 1788 independent reflections

  • 1606 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.08

  • 1788 reflections

  • 136 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—HN4⋯O1i 0.858 (16) 2.00 (2) 2.792 (2) 153 (3)
O1W—H1WA⋯O1ii 0.834 (9) 1.912 (11) 2.732 (2) 167 (2)
O1W—H1WB⋯O1iii 0.840 (9) 1.898 (11) 2.715 (2) 164.0 (19)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y+1, z; (iii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, coordination polymers involving dicyanamide (dca, N(CN)2) have attracted a great deal of attention, not only for their interesting extended architectures but also for their magnetic properties, especially compounds in the M(dca)2 series (Manson et al., 1998; Batten et al., 1998; Manson et al., 2001). The introduction of coligands has led to dramatic modifications of the crystal structures and magnetic properties (Batten et al., 2003; Miller et al., 2001). When 4-hydroxypyridine was used as a coligand, the title complex was obtained.

The title compound is a centrosymmetric two-dimensional coordination polymer, Fig. 1. The NiII atom, which is located on an inversion center, is six-coordinated by four N-atoms from four bridging dca ligands and two O-atoms from two water molecules, so exhibiting a distorted octahedral geometry. The Ni—N bond lengths [2.0769 (16) - 2.0785 (15) °] are comparable with those of 2.070 (2) ° found in [(EtPh3P)—Ni(dca)3] (Van der Werff et al., 2004), and 2.0715 (12) ° found in [Ni(dca)2(phen)] (Armentano et al., 2006). The coligand used, 4-hydroxypyridine, is present in the pyridinium-4-olate form and is not coordinted to the metal atom.

In the crystal structure, the µ-1,5 dca ligand links neighboring NiII atoms, forming a two-dimensional (4,4) network (Fig. 2). This resembles the situation in [Mn(dca)2(4-cyanopyridine)2]n (Dalai et al., 2002) and [Co2(dca)4(4-cyanopyridine)4]n(Du et al., 2006), but the structures are not isomorphous and here the co-ligands are coordinated to the metal atoms. However, as in the title compound, the layer-like structures are linked through hydrogen bonding interactions. In the title compound this involves the water molecules and the pyridinium-4-olate groups (Table 1).

Related literature top

For coordination polymers involving dicyanamide, see: Manson et al. (1998, 2001); Batten et al. (1998). For nickel(II)–dca complexes, see: Van der Werff et al. (2004); Armentano et al. (2006). For dicyanamide complexes with a co-ligand, see: Batten et al. (2003); Manson et al. (1998, 2001); Miller & Manson (2001). For dicyanamide complexes with 4-cyanopyridine as co-ligand, see: Dalai et al. (2002); Du et al. (2006). [Please revise scheme to shown only two dicyanamide ligands in the repeat unit]

Experimental top

To a methanol solution (20 mL) of nickel nitrate (0.145 g, 0.5 mmol) and 4-hydroxypyridine (0.095 g, 1.0 mmol), a water solution (5 ml) of dca (0.089 g, 1.0 mmol) was added slowly with stirring over 30 min at rt. The clear solution obtained was filtered and the filtrate left to evaporated at rt. After a few days, green single crystals were obtained (yield: 5%).

Refinement top

The NH and water H-atoms were located in difference electron-density maps and freely refined: N-H = 0.858 (16) Å, O-H = 0.834 (9) & 0.840 (9) Å. The C-bound H-atoms were included in calculated positions and treated as riding: C-H = 0.93 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the octahedral coordination geometry of the nickel(II) atom in the title compound. The coligand, present in the 4-pyridium-olate form, has been omitted for clarity. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the two-dimensional (4,4) network in the title compound.
Poly[[diaquadi-µ-dicyanamido-nickel(II)] bis(pyridinium-4-olate)] top
Crystal data top
[Ni(C2N3)2(H2O)2]·2C5H5NOF(000) = 428
Mr = 417.02Dx = 1.520 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1788 reflections
a = 7.8598 (6) Åθ = 2.6–26.0°
b = 12.8199 (10) ŵ = 1.10 mm1
c = 9.1080 (7) ÅT = 293 K
β = 96.753 (1)°Block, green
V = 911.37 (12) Å30.23 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1788 independent reflections
Radiation source: fine-focus sealed tube1606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.788, Tmax = 0.848k = 1515
6950 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.2827P]
where P = (Fo2 + 2Fc2)/3
1788 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.30 e Å3
4 restraintsΔρmin = 0.16 e Å3
Crystal data top
[Ni(C2N3)2(H2O)2]·2C5H5NOV = 911.37 (12) Å3
Mr = 417.02Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.8598 (6) ŵ = 1.10 mm1
b = 12.8199 (10) ÅT = 293 K
c = 9.1080 (7) Å0.23 × 0.18 × 0.15 mm
β = 96.753 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1788 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1606 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.848Rint = 0.016
6950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0284 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.30 e Å3
1788 reflectionsΔρmin = 0.16 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00001.00000.00000.03617 (12)
C10.9985 (2)0.59861 (12)0.1821 (2)0.0424 (4)
C20.9988 (3)0.75355 (14)0.0636 (2)0.0500 (5)
C30.6251 (3)0.38083 (17)0.1568 (3)0.0771 (7)
H30.71560.42480.14170.092*
C40.6426 (3)0.27675 (16)0.1384 (3)0.0657 (6)
H40.74340.25030.10880.079*
C50.5095 (2)0.20841 (13)0.1638 (2)0.0458 (4)
C60.3615 (3)0.25592 (16)0.2048 (3)0.0678 (7)
H60.26860.21450.22160.081*
C70.3507 (3)0.36025 (17)0.2205 (3)0.0683 (6)
H70.25130.38960.24860.082*
N10.9923 (2)0.84211 (11)0.05067 (19)0.0499 (4)
N21.0097 (3)0.65203 (13)0.0627 (2)0.0801 (7)
N30.9881 (2)0.54506 (12)0.28000 (17)0.0481 (4)
N40.4816 (3)0.42170 (13)0.1960 (2)0.0641 (5)
O10.52314 (18)0.10983 (10)0.15018 (18)0.0600 (4)
O1W1.26183 (19)0.99136 (10)0.01412 (19)0.0535 (4)
HN40.473 (4)0.4871 (14)0.214 (4)0.091 (10)*
H1WA1.330 (2)1.0346 (15)0.057 (2)0.070 (7)*
H1WB1.313 (2)0.9513 (14)0.039 (2)0.061 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0457 (2)0.02211 (17)0.0425 (2)0.00065 (11)0.01317 (14)0.00113 (11)
C10.0567 (11)0.0236 (7)0.0491 (10)0.0012 (7)0.0155 (8)0.0022 (7)
C20.0751 (14)0.0337 (10)0.0449 (10)0.0002 (9)0.0223 (9)0.0043 (8)
C30.0755 (16)0.0437 (12)0.117 (2)0.0220 (11)0.0303 (15)0.0086 (12)
C40.0528 (12)0.0457 (11)0.1031 (18)0.0087 (9)0.0282 (12)0.0134 (11)
C50.0489 (10)0.0324 (8)0.0575 (11)0.0035 (7)0.0118 (8)0.0082 (8)
C60.0577 (13)0.0430 (11)0.1088 (19)0.0096 (9)0.0355 (13)0.0184 (11)
C70.0627 (14)0.0477 (11)0.0971 (18)0.0079 (10)0.0204 (13)0.0200 (11)
N10.0674 (11)0.0284 (8)0.0565 (9)0.0011 (7)0.0182 (8)0.0034 (7)
N20.163 (2)0.0272 (8)0.0577 (11)0.0077 (10)0.0439 (12)0.0057 (8)
N30.0675 (11)0.0315 (8)0.0472 (9)0.0000 (7)0.0144 (7)0.0043 (7)
N40.0811 (14)0.0302 (9)0.0808 (13)0.0004 (8)0.0082 (11)0.0084 (8)
O10.0604 (9)0.0298 (6)0.0932 (11)0.0021 (6)0.0234 (8)0.0126 (7)
O1W0.0447 (7)0.0448 (8)0.0725 (10)0.0022 (6)0.0135 (7)0.0208 (7)
Geometric parameters (Å, º) top
Ni1—O1Wi2.0498 (15)C4—C51.405 (3)
Ni1—O1W2.0498 (15)C4—H40.9300
Ni1—N3ii2.0769 (16)C5—O11.276 (2)
Ni1—N3iii2.0769 (16)C5—C61.402 (3)
Ni1—N12.0785 (15)C6—C71.349 (3)
Ni1—N1i2.0785 (15)C6—H60.9300
C1—N31.136 (2)C7—N41.335 (3)
C1—N21.297 (3)C7—H70.9300
C2—N11.142 (2)N3—Ni1iv2.0769 (15)
C2—N21.304 (2)N4—HN40.858 (16)
C3—N41.330 (3)O1W—H1WA0.834 (9)
C3—C41.354 (3)O1W—H1WB0.840 (9)
C3—H30.9300
O1Wi—Ni1—O1W180.0C3—C4—H4119.8
O1Wi—Ni1—N3ii91.34 (7)C5—C4—H4119.8
O1W—Ni1—N3ii88.66 (7)O1—C5—C6122.59 (18)
O1Wi—Ni1—N3iii88.66 (7)O1—C5—C4121.93 (18)
O1W—Ni1—N3iii91.34 (7)C6—C5—C4115.49 (17)
N3ii—Ni1—N3iii180.00 (2)C7—C6—C5121.6 (2)
O1Wi—Ni1—N190.65 (6)C7—C6—H6119.2
O1W—Ni1—N189.35 (6)C5—C6—H6119.2
N3ii—Ni1—N186.80 (6)N4—C7—C6120.5 (2)
N3iii—Ni1—N193.20 (6)N4—C7—H7119.7
O1Wi—Ni1—N1i89.35 (6)C6—C7—H7119.7
O1W—Ni1—N1i90.65 (6)C2—N1—Ni1171.49 (17)
N3ii—Ni1—N1i93.20 (6)C1—N2—C2120.69 (18)
N3iii—Ni1—N1i86.80 (6)C1—N3—Ni1iv157.84 (15)
N1—Ni1—N1i180.0C3—N4—C7120.46 (18)
N3—C1—N2174.66 (19)C3—N4—HN4121 (2)
N1—C2—N2173.5 (2)C7—N4—HN4118 (2)
N4—C3—C4121.5 (2)Ni1—O1W—H1WA125.4 (15)
N4—C3—H3119.2Ni1—O1W—H1WB122.9 (14)
C4—C3—H3119.2H1WA—O1W—H1WB110.3 (15)
C3—C4—C5120.4 (2)
Symmetry codes: (i) x+2, y+2, z; (ii) x, y+3/2, z1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—HN4···O1v0.86 (2)2.00 (2)2.792 (2)153 (3)
O1W—H1WA···O1vi0.83 (1)1.91 (1)2.732 (2)167 (2)
O1W—H1WB···O1vii0.84 (1)1.90 (1)2.715 (2)164 (2)
Symmetry codes: (v) x+1, y+1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C2N3)2(H2O)2]·2C5H5NO
Mr417.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8598 (6), 12.8199 (10), 9.1080 (7)
β (°) 96.753 (1)
V3)911.37 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.23 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.788, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
6950, 1788, 1606
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.08
No. of reflections1788
No. of parameters136
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—HN4···O1i0.858 (16)2.00 (2)2.792 (2)153 (3)
O1W—H1WA···O1ii0.834 (9)1.912 (11)2.732 (2)167 (2)
O1W—H1WB···O1iii0.840 (9)1.898 (11)2.715 (2)164.0 (19)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+2, y+1, z.
 

Acknowledgements

We thank Chongqing University for generously supporting this work.

References

First citationArmentano, D., De Munno, G., Guerra, F., Julve, M. & Lloret, F. (2006). Inorg. Chem. 45, 4626–4636.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBatten, S. R., Jensen, P., Moubaraki, B., Murray, K. S., Robson, R. (1998). Chem. Comm. pp. 439–440.  CrossRef Google Scholar
First citationBatten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. pp. 103–130.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalai, S., Mukherjee, P. S., Zangrando, E. & Chaudhuri, N. R. (2002). New J. Chem. 26, 1185–1189.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, M., Wang, Q., Wang, Y., Zhao, X.-J. & Ribas, J. (2006). J. Solid State Chem. 179, 3926–3936.  Web of Science CSD CrossRef CAS Google Scholar
First citationManson, J. L., Kmety, C. R., Huang, Q.-Z., Lynn, J. W., Bendele, G. M., Pagola, S., Stephens, P. W., Liable-Sands, L. M., Rheingold, A. L., Epstein, A. J. & Miller, J. S. (1998). Chem. Mater. 10, 2552–2560.  Web of Science CrossRef CAS Google Scholar
First citationManson, J. L., Kmety, C. R., Palacio, F., Epstein, A. J. & Miller, J. S. (2001). Chem. Mater. 13, 1068–1073.  Web of Science CrossRef CAS Google Scholar
First citationMiller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563–570.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan der Werff, P. M., Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Cashion, J. D. (2004). Cryst. Growth Des. 4, 503–508.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1648-m1649
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds