organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­droxy­pyridinium hydrogen chloranilate monohydrate

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 3 November 2009; accepted 6 November 2009; online 11 November 2009)

In the title salt hydrate, C5H6NO+·C6HCl2O4·H2O, the three components are held together by O—H⋯O and N—H⋯O hydrogen bonds, as well as by C—H⋯O contacts, forming a double-tape structure along the c axis. Within each tape, the pyridinium ring and the chloranilate ring are almost coplanar, forming a dihedral angle of 2.35 (7)°.

Related literature

For related structures, see, for example: Gotoh et al. (2009a[Gotoh, K., Nagoshi, H. & Ishida, H. (2009a). Acta Cryst. C65, o273-o277.],b[Gotoh, K., Nagoshi, H. & Ishida, H. (2009b). Acta Cryst. E65, o614.]); Gotoh & Ishida (2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o2467.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6NO+·C6HCl2O4·H2O

  • Mr = 322.10

  • Triclinic, [P \overline 1]

  • a = 7.4893 (13) Å

  • b = 9.6650 (17) Å

  • c = 9.9305 (17) Å

  • α = 88.129 (5)°

  • β = 68.404 (6)°

  • γ = 67.980 (4)°

  • V = 614.95 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 180 K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID-II diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.907, Tmax = 0.973

  • 12237 measured reflections

  • 3572 independent reflections

  • 2952 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.088

  • S = 1.07

  • 3572 reflections

  • 201 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.911 (18) 1.867 (18) 2.7461 (17) 161.4 (18)
O4—H4⋯O1 0.77 (3) 2.21 (3) 2.6348 (16) 115 (2)
O4—H4⋯O6 0.77 (3) 2.04 (3) 2.7187 (17) 147 (3)
O5—H5⋯O1 0.85 (3) 1.80 (3) 2.6474 (17) 172 (3)
O6—H6A⋯O2i 0.80 (3) 2.21 (3) 2.8959 (18) 144 (3)
O6—H6A⋯O3i 0.80 (3) 2.50 (3) 3.1220 (17) 136 (3)
O6—H6B⋯O1ii 0.84 (4) 2.11 (3) 2.9281 (18) 164 (3)
C7—H7⋯O6 0.95 2.59 3.484 (2) 157
C9—H9⋯O4iii 0.95 2.40 3.3084 (18) 160
C10—H10⋯O3iv 0.95 2.38 3.163 (2) 140
Symmetry codes: (i) x, y, z-1; (ii) -x+2, -y+1, -z; (iii) x, y-1, z; (iv) x, y-1, z-1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title salt hydrate, C5H6NO+.C6HCl2O4-.H2O, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in substituted-pyridine – chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) systems (Gotoh & Ishida, 2009; Gotoh et al., 2009a,b).

In (I), the three components are held together by O—H···O and N—H···O hydrogen bonds, as well as C—H···O contacts (Fig. 1 and Table 1) forming a double-tape structure along the c direction. The connections between individual tapes, Fig. 2, are accomplished via Owater–H···O hydrogen bonds, Fig. 3. Within each tape, the pyridinium N1/C7–C11 and the anion C1–C6 rings are almost coplanar, with a dihedral angle of 2.35 (7)° between them. A ππ interaction between the anion rings is also present within the double-tape structure; the centroid-centroid distance [Cg1···Cg1iii; symmetry code: (iii) -x + 2, -y + 1, -z + 1] is 3.6729 (11) Å and the inter-planar separation is 3.2656 (6) Å. The double-tapes are connected by C—H···O contacts, resulting in a layer parallel to the (100) plane, Table 1.

Related literature top

For related structures, see, for example: Gotoh et al. (2009a,b); Gotoh & Ishida (2009).

Experimental top

Single crystals were obtained by slow evaporation from a methanol solution (150 ml) of chloranilic acid (350 mg) and 3-hydroxypyridine (160 mg) at room temperature.

Refinement top

All H atoms were found in a difference Fourier map and O- and N-bound H atoms were refined isotropically. The refined O—H and N—H bond lengths are given in Table 1. C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of the constituents in (I), with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed lines indicate O—H···O hydrogen bonds and C—H···O contacts.
[Figure 2] Fig. 2. A partial packing diagram for (I), showing a molecular tape running along the c axis. The dashed lines indicate O—H···O and N—H···O hydrogen bonds, and C—H···O contacts.
[Figure 3] Fig. 3. A partial packing diagram for (I), showing a double-tape structure running along the c axis. The dashed lines indicate O—H···O and N—H···O hydrogen bonds, and C—H···O contacts. H atoms not involved in the hydrogen bonds have been omitted.
3-Hydroxypyridinium hydrogen chloranilate monohydrate top
Crystal data top
C5H6NO+·C6HCl2O4·H2OZ = 2
Mr = 322.10F(000) = 328.00
Triclinic, P1Dx = 1.739 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.4893 (13) ÅCell parameters from 10001 reflections
b = 9.6650 (17) Åθ = 3.0–30.1°
c = 9.9305 (17) ŵ = 0.55 mm1
α = 88.129 (5)°T = 180 K
β = 68.404 (6)°Block, brown
γ = 67.980 (4)°0.20 × 0.15 × 0.05 mm
V = 614.95 (18) Å3
Data collection top
Rigaku R-AXIS RAPID-II
diffractometer
2952 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.025
ω scansθmax = 30.0°
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
h = 1010
Tmin = 0.907, Tmax = 0.973k = 1313
12237 measured reflectionsl = 1313
3572 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2238P]
where P = (Fo2 + 2Fc2)/3
3572 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C5H6NO+·C6HCl2O4·H2Oγ = 67.980 (4)°
Mr = 322.10V = 614.95 (18) Å3
Triclinic, P1Z = 2
a = 7.4893 (13) ÅMo Kα radiation
b = 9.6650 (17) ŵ = 0.55 mm1
c = 9.9305 (17) ÅT = 180 K
α = 88.129 (5)°0.20 × 0.15 × 0.05 mm
β = 68.404 (6)°
Data collection top
Rigaku R-AXIS RAPID-II
diffractometer
3572 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
2952 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.973Rint = 0.025
12237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.60 e Å3
3572 reflectionsΔρmin = 0.29 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74975 (5)0.30013 (3)0.52240 (3)0.01897 (9)
Cl20.76493 (5)0.94942 (3)0.44706 (4)0.02295 (10)
O10.77201 (16)0.47186 (11)0.26178 (10)0.0198 (2)
O20.72724 (17)0.51208 (11)0.74674 (10)0.0226 (2)
O30.73261 (17)0.78687 (12)0.71214 (11)0.0244 (2)
O40.76878 (18)0.74463 (12)0.23264 (11)0.0238 (2)
O50.7211 (2)0.21895 (12)0.23481 (11)0.0277 (2)
O60.8140 (2)0.62351 (14)0.02703 (12)0.0284 (2)
N10.7338 (2)0.25226 (14)0.13073 (13)0.0229 (2)
C10.76153 (19)0.53710 (14)0.37347 (13)0.0153 (2)
C20.7509 (2)0.47845 (13)0.50577 (13)0.0152 (2)
C30.7388 (2)0.55870 (14)0.62593 (13)0.0162 (2)
C40.7419 (2)0.71690 (14)0.60863 (14)0.0173 (2)
C50.7570 (2)0.77458 (14)0.46900 (14)0.0168 (2)
C60.7618 (2)0.69224 (14)0.35935 (14)0.0165 (2)
C70.7293 (2)0.29123 (15)0.00035 (15)0.0199 (3)
H70.72720.38700.02150.024*
C80.7279 (2)0.18979 (15)0.10182 (14)0.0190 (3)
C90.7317 (2)0.05028 (15)0.06603 (15)0.0222 (3)
H90.72970.02030.13480.027*
C100.7383 (2)0.01496 (16)0.06979 (16)0.0239 (3)
H100.74280.08050.09540.029*
C110.7382 (2)0.11952 (17)0.16830 (15)0.0252 (3)
H110.74130.09700.26170.030*
H10.731 (3)0.328 (2)0.188 (2)0.041 (6)*
H6A0.759 (4)0.633 (3)0.084 (3)0.067 (8)*
H6B0.941 (5)0.594 (3)0.081 (3)0.061 (8)*
H40.762 (4)0.690 (3)0.182 (3)0.063 (8)*
H50.739 (4)0.301 (3)0.235 (3)0.060 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02939 (17)0.01539 (14)0.01838 (15)0.01195 (12)0.01284 (12)0.00521 (11)
Cl20.03172 (18)0.01444 (15)0.02679 (18)0.01173 (13)0.01295 (14)0.00362 (11)
O10.0324 (5)0.0193 (4)0.0138 (4)0.0142 (4)0.0113 (4)0.0028 (3)
O20.0366 (6)0.0214 (5)0.0159 (4)0.0141 (4)0.0140 (4)0.0051 (4)
O30.0360 (6)0.0239 (5)0.0181 (5)0.0149 (4)0.0120 (4)0.0016 (4)
O40.0443 (6)0.0186 (5)0.0171 (5)0.0168 (4)0.0166 (4)0.0069 (4)
O50.0531 (7)0.0237 (5)0.0208 (5)0.0232 (5)0.0218 (5)0.0071 (4)
O60.0357 (6)0.0369 (6)0.0159 (5)0.0149 (5)0.0124 (5)0.0023 (4)
N10.0314 (6)0.0236 (6)0.0174 (5)0.0136 (5)0.0106 (5)0.0073 (4)
C10.0189 (6)0.0146 (5)0.0145 (5)0.0077 (4)0.0076 (4)0.0027 (4)
C20.0212 (6)0.0130 (5)0.0145 (6)0.0081 (4)0.0088 (5)0.0029 (4)
C30.0192 (6)0.0162 (5)0.0152 (6)0.0077 (5)0.0079 (5)0.0023 (4)
C40.0204 (6)0.0180 (6)0.0157 (6)0.0086 (5)0.0080 (5)0.0011 (4)
C50.0218 (6)0.0128 (5)0.0185 (6)0.0086 (5)0.0088 (5)0.0030 (4)
C60.0221 (6)0.0152 (5)0.0150 (6)0.0091 (5)0.0086 (5)0.0043 (4)
C70.0272 (7)0.0171 (6)0.0191 (6)0.0114 (5)0.0101 (5)0.0034 (5)
C80.0261 (7)0.0181 (6)0.0170 (6)0.0111 (5)0.0103 (5)0.0026 (5)
C90.0340 (7)0.0181 (6)0.0202 (6)0.0134 (5)0.0134 (6)0.0049 (5)
C100.0335 (7)0.0206 (6)0.0219 (7)0.0137 (6)0.0118 (6)0.0002 (5)
C110.0344 (8)0.0295 (7)0.0162 (6)0.0157 (6)0.0113 (5)0.0023 (5)
Geometric parameters (Å, º) top
Cl1—C21.7289 (13)C1—C21.4007 (17)
Cl2—C51.7172 (13)C1—C61.5020 (17)
O1—C11.2564 (15)C2—C31.4006 (17)
O2—C31.2519 (15)C3—C41.5412 (18)
O3—C41.2149 (16)C4—C51.4587 (18)
O4—C61.3313 (15)C5—C61.3514 (18)
O4—H40.76 (3)C7—C81.3877 (18)
O5—C81.3381 (16)C7—H70.9500
O5—H50.85 (3)C8—C91.3930 (18)
O6—H6A0.80 (3)C9—C101.3808 (19)
O6—H6B0.84 (3)C9—H90.9500
N1—C111.3330 (19)C10—C111.383 (2)
N1—C71.3452 (18)C10—H100.9500
N1—H10.91 (2)C11—H110.9500
C6—O4—H4111 (2)C4—C5—Cl2119.01 (9)
C8—O5—H5106.0 (18)O4—C6—C5121.39 (11)
H6A—O6—H6B103 (3)O4—C6—C1116.69 (11)
C11—N1—C7123.32 (12)C5—C6—C1121.91 (11)
C11—N1—H1125.1 (14)N1—C7—C8119.14 (12)
C7—N1—H1111.6 (14)N1—C7—H7120.4
O1—C1—C2126.22 (11)C8—C7—H7120.4
O1—C1—C6115.16 (11)O5—C8—C7123.49 (12)
C2—C1—C6118.62 (11)O5—C8—C9117.59 (12)
C3—C2—C1122.83 (11)C7—C8—C9118.92 (12)
C3—C2—Cl1118.48 (9)C10—C9—C8119.78 (13)
C1—C2—Cl1118.68 (9)C10—C9—H9120.1
O2—C3—C2125.37 (12)C8—C9—H9120.1
O2—C3—C4116.88 (11)C9—C10—C11119.55 (13)
C2—C3—C4117.75 (11)C9—C10—H10120.2
O3—C4—C5123.42 (12)C11—C10—H10120.2
O3—C4—C3118.12 (11)N1—C11—C10119.29 (13)
C5—C4—C3118.46 (10)N1—C11—H11120.4
C6—C5—C4120.38 (11)C10—C11—H11120.4
C6—C5—Cl2120.61 (10)
O1—C1—C2—C3179.78 (13)C4—C5—C6—O4177.85 (12)
C6—C1—C2—C30.53 (19)Cl2—C5—C6—O41.29 (19)
O1—C1—C2—Cl10.50 (19)C4—C5—C6—C12.7 (2)
C6—C1—C2—Cl1179.80 (9)Cl2—C5—C6—C1178.13 (10)
C1—C2—C3—O2179.38 (13)O1—C1—C6—O41.29 (17)
Cl1—C2—C3—O20.10 (19)C2—C1—C6—O4178.98 (12)
C1—C2—C3—C41.25 (19)O1—C1—C6—C5178.16 (12)
Cl1—C2—C3—C4179.47 (9)C2—C1—C6—C51.57 (19)
O2—C3—C4—O30.19 (19)C11—N1—C7—C80.4 (2)
C2—C3—C4—O3179.62 (12)N1—C7—C8—O5179.23 (13)
O2—C3—C4—C5179.52 (12)N1—C7—C8—C90.2 (2)
C2—C3—C4—C50.09 (18)O5—C8—C9—C10179.88 (14)
O3—C4—C5—C6178.41 (13)C7—C8—C9—C100.5 (2)
C3—C4—C5—C61.89 (19)C8—C9—C10—C110.9 (2)
O3—C4—C5—Cl20.74 (19)C7—N1—C11—C100.0 (2)
C3—C4—C5—Cl2178.96 (9)C9—C10—C11—N10.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.911 (18)1.867 (18)2.7461 (17)161.4 (18)
O4—H4···O10.77 (3)2.21 (3)2.6348 (16)115 (2)
O4—H4···O60.77 (3)2.04 (3)2.7187 (17)147 (3)
O5—H5···O10.85 (3)1.80 (3)2.6474 (17)172 (3)
O6—H6A···O2i0.80 (3)2.21 (3)2.8959 (18)144 (3)
O6—H6A···O3i0.80 (3)2.50 (3)3.1220 (17)136 (3)
O6—H6B···O1ii0.84 (4)2.11 (3)2.9281 (18)164 (3)
C7—H7···O60.952.593.484 (2)157
C9—H9···O4iii0.952.403.3084 (18)160
C10—H10···O3iv0.952.383.163 (2)140
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z; (iii) x, y1, z; (iv) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC5H6NO+·C6HCl2O4·H2O
Mr322.10
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)7.4893 (13), 9.6650 (17), 9.9305 (17)
α, β, γ (°)88.129 (5), 68.404 (6), 67.980 (4)
V3)614.95 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.20 × 0.15 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID-II
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.907, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
12237, 3572, 2952
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.088, 1.07
No. of reflections3572
No. of parameters201
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.29

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.911 (18)1.867 (18)2.7461 (17)161.4 (18)
O4—H4···O10.77 (3)2.21 (3)2.6348 (16)115 (2)
O4—H4···O60.77 (3)2.04 (3)2.7187 (17)147 (3)
O5—H5···O10.85 (3)1.80 (3)2.6474 (17)172 (3)
O6—H6A···O2i0.80 (3)2.21 (3)2.8959 (18)144 (3)
O6—H6A···O3i0.80 (3)2.50 (3)3.1220 (17)136 (3)
O6—H6B···O1ii0.84 (4)2.11 (3)2.9281 (18)164 (3)
C7—H7···O60.952.593.484 (2)157
C9—H9···O4iii0.952.403.3084 (18)160
C10—H10···O3iv0.952.383.163 (2)140
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z; (iii) x, y1, z; (iv) x, y1, z1.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o2467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2009a). Acta Cryst. C65, o273–o277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2009b). Acta Cryst. E65, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds