organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3237-o3238

7-Chloro-3,3-di­methyl-9-phenyl-1,2,3,4-tetra­hydro­acridin-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 November 2009; accepted 23 November 2009; online 28 November 2009)

In the title salt, C21H18ClNO, the quinoline ring system is approximately planar [maximum deviation = 0.035 (2) Å], and forms a dihedral angle of 71.42 (6)° with the attached phenyl ring. The cyclo­hexa­none ring exists in a half-boat conformation. In the crystal packing, C—H⋯O contacts link the mol­ecules into extended supra­molecular chains along the c axis.

Related literature

For background to and biological activity of quinolines, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]); Maguire et al. (1994[Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129-2137.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1026.]); Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.]). For the synthesis of quinoline derivatives, see: Fun, Loh et al. (2009[Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688-o2689.]); Fun, Yeap et al. (2009[Fun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009). Acta Cryst. E65, o2665-o2666.]). For a related structure: see: Loh et al. (2009[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144-o3145.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18ClNO

  • Mr = 335.81

  • Triclinic, [P \overline 1]

  • a = 9.8375 (1) Å

  • b = 10.0525 (1) Å

  • c = 10.1076 (1) Å

  • α = 79.162 (1)°

  • β = 63.389 (1)°

  • γ = 70.928 (1)°

  • V = 843.59 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.933, Tmax = 0.965

  • 18373 measured reflections

  • 4882 independent reflections

  • 3915 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.111

  • S = 1.04

  • 4882 reflections

  • 289 parameters

  • All H-atom parameters refined

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.962 (19) 2.39 (2) 3.225 (2) 145.6 (17)
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and have found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001). Because of their great importance, the synthesis of new derivatives of quinoline remains an active research area. Recently, we have reported the synthesis of some novel quinoline derivatives (Fun, Loh et al., 2009; Fun, Yeap et al., 2009).

In the title compound (Fig. 1), the quinoline ring system (C1–C8/C13/N1) is approximately planar with a maximum deviation of 0.035 (2) Å at atom C13. The mean plane through the quinoline ring forms a dihedral angle of 71.42 (6)° with the phenyl ring (C14–C19). The cyclohexanone (C8–C13) ring exists in a half-boat conformation. The puckering parameters (Cremer & Pople, 1975) are Q = 0.5017 (17) Å; Θ = 126.65 (18)° and ϕ = 352.8 (2)°. Bond lengths and angles are comparable to that in a closely related structure (Loh et al., 2009).

In the crystal packing (Fig. 2), C3—H3···O1 (Table 1) hydrogen bonds link neighbouring molecules, forming extended one-dimensional chains along c axis.

Related literature top

For background to and biological activity of quinolines, see: Morimoto et al. (1991); Michael et al. (1997); Markees et al. (1970); Campbell et al. (1988); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001). For the synthesis of quinoline derivatives, see: Fun, Loh et al. (2009); Fun, Yeap et al. (2009). For a related structure: see: Loh et al. (2009). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A 1:1 mixture of 2-amino-5-chlorobenzophenone (0.2 g, 0.001 M), 5,5-dimethyl-1,3-cyclohexanedione (0.14 g, 0.001 M), and 1.0 ml concentrated HCl in distilled ethanol was irradiated for about 12 min under microwave irradiation at 240 W in a domestic microwave oven. The resulting mixture was poured on to ice and neutralized. The solid that formed was filtered, dried and purified by column chromatography using a 1:1 mixture of chloroform and petroleum ether. M. pt.: 459–461 K, yield: 45%.

Refinement top

All hydrogen atoms were located from the difference Fourier map and were refined freely [range of C–H = 0.936 (19) to 1.020 (2) Å].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the a axis, showing extended one-dimensional chains. The intermolecular interactions are shown as dashed lines.
7-Chloro-3,3-dimethyl-9-phenyl-1,2,3,4-tetrahydroacridin-1-one top
Crystal data top
C21H18ClNOZ = 2
Mr = 335.81F(000) = 352
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8375 (1) ÅCell parameters from 6537 reflections
b = 10.0525 (1) Åθ = 2.3–32.2°
c = 10.1076 (1) ŵ = 0.23 mm1
α = 79.162 (1)°T = 100 K
β = 63.389 (1)°Block, colourless
γ = 70.928 (1)°0.30 × 0.20 × 0.15 mm
V = 843.59 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4882 independent reflections
Radiation source: fine-focus sealed tube3915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.933, Tmax = 0.965k = 1414
18373 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.4367P]
where P = (Fo2 + 2Fc2)/3
4882 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C21H18ClNOγ = 70.928 (1)°
Mr = 335.81V = 843.59 (2) Å3
Triclinic, P1Z = 2
a = 9.8375 (1) ÅMo Kα radiation
b = 10.0525 (1) ŵ = 0.23 mm1
c = 10.1076 (1) ÅT = 100 K
α = 79.162 (1)°0.30 × 0.20 × 0.15 mm
β = 63.389 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4882 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3915 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.965Rint = 0.030
18373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.04Δρmax = 0.47 e Å3
4882 reflectionsΔρmin = 0.29 e Å3
289 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.00497 (5)0.24082 (4)0.06504 (4)0.03117 (11)
O10.66039 (14)0.51264 (12)0.86939 (12)0.0328 (3)
N10.55017 (13)0.70933 (12)0.44602 (12)0.0164 (2)
C10.65323 (15)0.59559 (14)0.36408 (14)0.0165 (3)
C20.67188 (17)0.59806 (16)0.21588 (15)0.0205 (3)
C30.77851 (18)0.49116 (16)0.12519 (16)0.0230 (3)
C40.87017 (17)0.37689 (15)0.18098 (15)0.0214 (3)
C50.85517 (16)0.36841 (15)0.32311 (15)0.0194 (3)
C60.74409 (15)0.47799 (14)0.41947 (14)0.0159 (3)
C70.72349 (15)0.47749 (14)0.56874 (14)0.0152 (2)
C80.61798 (15)0.59343 (14)0.65057 (14)0.0157 (2)
C90.58812 (16)0.60312 (15)0.80857 (15)0.0190 (3)
C100.46337 (18)0.73000 (15)0.89036 (15)0.0214 (3)
C110.45479 (17)0.86542 (14)0.79119 (15)0.0192 (3)
C120.41995 (16)0.83686 (14)0.66761 (15)0.0177 (3)
C130.53443 (15)0.70831 (14)0.58292 (14)0.0150 (2)
C140.81958 (15)0.35147 (14)0.62420 (14)0.0163 (3)
C150.78844 (16)0.22131 (15)0.64521 (16)0.0203 (3)
C160.88422 (18)0.10146 (16)0.68699 (18)0.0250 (3)
C171.01186 (18)0.11037 (16)0.70617 (18)0.0260 (3)
C181.04371 (17)0.23964 (16)0.68430 (17)0.0239 (3)
C190.94831 (16)0.35960 (15)0.64384 (15)0.0198 (3)
C200.6109 (2)0.90496 (18)0.72693 (19)0.0273 (3)
C210.3203 (2)0.98557 (16)0.88205 (18)0.0274 (3)
H12B0.4182 (19)0.9185 (18)0.5958 (19)0.020 (4)*
H12A0.313 (2)0.8231 (17)0.7114 (18)0.020 (4)*
H50.920 (2)0.2884 (19)0.3566 (19)0.027 (5)*
H190.967 (2)0.4527 (18)0.6301 (19)0.022 (4)*
H30.791 (2)0.4926 (19)0.025 (2)0.032 (5)*
H150.702 (2)0.2166 (18)0.6296 (19)0.026 (4)*
H20C0.700 (2)0.8310 (18)0.664 (2)0.025 (4)*
H171.077 (2)0.0280 (19)0.733 (2)0.030 (5)*
H181.130 (2)0.2447 (19)0.698 (2)0.029 (5)*
H21C0.312 (2)1.073 (2)0.819 (2)0.031 (5)*
H10B0.484 (2)0.7408 (19)0.974 (2)0.034 (5)*
H20.608 (2)0.681 (2)0.183 (2)0.033 (5)*
H10A0.361 (2)0.7063 (18)0.933 (2)0.026 (4)*
H160.863 (2)0.011 (2)0.703 (2)0.030 (5)*
H21B0.215 (2)0.962 (2)0.928 (2)0.035 (5)*
H21A0.342 (2)1.006 (2)0.963 (2)0.037 (5)*
H20B0.635 (2)0.918 (2)0.807 (2)0.040 (5)*
H20A0.602 (2)0.994 (2)0.671 (2)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0372 (2)0.0252 (2)0.02082 (18)0.00849 (15)0.00046 (15)0.00871 (14)
O10.0348 (6)0.0349 (6)0.0200 (5)0.0068 (5)0.0154 (5)0.0010 (5)
N10.0181 (5)0.0169 (5)0.0169 (5)0.0055 (4)0.0098 (4)0.0005 (4)
C10.0182 (6)0.0181 (6)0.0170 (6)0.0083 (5)0.0090 (5)0.0006 (5)
C20.0250 (7)0.0232 (7)0.0181 (6)0.0102 (6)0.0115 (5)0.0016 (5)
C30.0302 (7)0.0268 (8)0.0157 (6)0.0138 (6)0.0086 (6)0.0010 (5)
C40.0235 (7)0.0195 (7)0.0184 (6)0.0093 (5)0.0024 (5)0.0054 (5)
C50.0196 (6)0.0173 (7)0.0200 (6)0.0061 (5)0.0065 (5)0.0006 (5)
C60.0167 (6)0.0167 (6)0.0171 (6)0.0076 (5)0.0077 (5)0.0002 (5)
C70.0144 (6)0.0158 (6)0.0172 (6)0.0066 (5)0.0075 (5)0.0019 (5)
C80.0169 (6)0.0168 (6)0.0154 (6)0.0058 (5)0.0084 (5)0.0012 (5)
C90.0214 (6)0.0206 (7)0.0162 (6)0.0064 (5)0.0092 (5)0.0013 (5)
C100.0282 (7)0.0194 (7)0.0157 (6)0.0044 (6)0.0097 (6)0.0014 (5)
C110.0256 (7)0.0164 (6)0.0179 (6)0.0060 (5)0.0105 (5)0.0015 (5)
C120.0202 (6)0.0155 (6)0.0191 (6)0.0033 (5)0.0109 (5)0.0003 (5)
C130.0160 (6)0.0151 (6)0.0165 (6)0.0058 (5)0.0082 (5)0.0002 (5)
C140.0160 (6)0.0165 (6)0.0154 (6)0.0036 (5)0.0065 (5)0.0002 (5)
C150.0186 (6)0.0187 (7)0.0249 (7)0.0053 (5)0.0107 (5)0.0004 (5)
C160.0246 (7)0.0164 (7)0.0336 (8)0.0057 (6)0.0133 (6)0.0026 (6)
C170.0211 (7)0.0211 (7)0.0324 (8)0.0024 (6)0.0131 (6)0.0054 (6)
C180.0175 (6)0.0270 (8)0.0284 (7)0.0067 (6)0.0119 (6)0.0035 (6)
C190.0195 (6)0.0192 (7)0.0211 (6)0.0071 (5)0.0089 (5)0.0024 (5)
C200.0338 (8)0.0263 (8)0.0308 (8)0.0141 (7)0.0179 (7)0.0006 (6)
C210.0376 (9)0.0194 (7)0.0233 (7)0.0019 (6)0.0134 (7)0.0056 (6)
Geometric parameters (Å, º) top
Cl1—C41.7402 (14)C11—C121.5306 (19)
O1—C91.2122 (17)C11—C201.532 (2)
N1—C131.3200 (16)C12—C131.5075 (18)
N1—C11.3665 (17)C12—H12B0.989 (17)
C1—C61.4209 (18)C12—H12A0.987 (17)
C1—C21.4216 (18)C14—C191.3960 (19)
C2—C31.367 (2)C14—C151.3965 (19)
C2—H20.965 (19)C15—C161.3931 (19)
C3—C41.409 (2)C15—H150.944 (18)
C3—H30.966 (19)C16—C171.386 (2)
C4—C51.366 (2)C16—H160.969 (19)
C5—C61.4210 (19)C17—C181.390 (2)
C5—H50.962 (18)C17—H170.944 (18)
C6—C71.4288 (18)C18—C191.3859 (19)
C7—C81.3866 (18)C18—H180.936 (19)
C7—C141.4959 (17)C19—H190.986 (17)
C8—C131.4363 (17)C20—H20C0.989 (18)
C8—C91.5052 (18)C20—H20B0.98 (2)
C9—C101.510 (2)C20—H20A0.97 (2)
C10—C111.5339 (19)C21—H21C0.987 (19)
C10—H10B0.99 (2)C21—H21B1.02 (2)
C10—H10A0.996 (18)C21—H21A1.00 (2)
C11—C211.529 (2)
C13—N1—C1118.00 (11)C13—C12—C11114.16 (11)
N1—C1—C6122.92 (12)C13—C12—H12B108.2 (10)
N1—C1—C2117.86 (12)C11—C12—H12B111.5 (10)
C6—C1—C2119.21 (12)C13—C12—H12A107.6 (10)
C3—C2—C1121.05 (13)C11—C12—H12A108.9 (10)
C3—C2—H2123.0 (11)H12B—C12—H12A106.2 (13)
C1—C2—H2115.9 (11)N1—C13—C8123.51 (12)
C2—C3—C4118.94 (13)N1—C13—C12115.64 (11)
C2—C3—H3121.0 (11)C8—C13—C12120.85 (11)
C4—C3—H3120.0 (11)C19—C14—C15119.32 (12)
C5—C4—C3122.32 (13)C19—C14—C7120.81 (12)
C5—C4—Cl1119.04 (11)C15—C14—C7119.67 (12)
C3—C4—Cl1118.64 (11)C16—C15—C14120.08 (13)
C4—C5—C6119.59 (13)C16—C15—H15121.3 (11)
C4—C5—H5119.5 (11)C14—C15—H15118.6 (11)
C6—C5—H5120.9 (11)C17—C16—C15120.26 (14)
C1—C6—C5118.86 (12)C17—C16—H16119.0 (11)
C1—C6—C7118.33 (12)C15—C16—H16120.7 (11)
C5—C6—C7122.77 (12)C16—C17—C18119.75 (13)
C8—C7—C6118.01 (11)C16—C17—H17119.3 (11)
C8—C7—C14124.97 (11)C18—C17—H17121.0 (11)
C6—C7—C14117.02 (11)C19—C18—C17120.37 (14)
C7—C8—C13119.21 (11)C19—C18—H18120.5 (11)
C7—C8—C9122.07 (11)C17—C18—H18119.1 (11)
C13—C8—C9118.72 (12)C18—C19—C14120.22 (13)
O1—C9—C8121.74 (13)C18—C19—H19121.7 (10)
O1—C9—C10120.60 (12)C14—C19—H19118.0 (10)
C8—C9—C10117.65 (11)C11—C20—H20C111.5 (10)
C9—C10—C11113.43 (12)C11—C20—H20B110.4 (12)
C9—C10—H10B107.8 (11)H20C—C20—H20B108.1 (15)
C11—C10—H10B111.5 (11)C11—C20—H20A110.4 (12)
C9—C10—H10A106.2 (10)H20C—C20—H20A110.1 (16)
C11—C10—H10A109.8 (10)H20B—C20—H20A106.1 (17)
H10B—C10—H10A107.7 (15)C11—C21—H21C110.1 (11)
C21—C11—C12109.62 (12)C11—C21—H21B111.3 (11)
C21—C11—C20109.35 (12)H21C—C21—H21B108.7 (15)
C12—C11—C20110.87 (12)C11—C21—H21A110.5 (11)
C21—C11—C10109.44 (12)H21C—C21—H21A107.0 (15)
C12—C11—C10106.87 (11)H21B—C21—H21A109.1 (16)
C20—C11—C10110.65 (12)
C13—N1—C1—C60.51 (19)C8—C9—C10—C1134.80 (18)
C13—N1—C1—C2178.97 (12)C9—C10—C11—C21177.24 (12)
N1—C1—C2—C3176.78 (13)C9—C10—C11—C1258.62 (16)
C6—C1—C2—C31.7 (2)C9—C10—C11—C2062.19 (16)
C1—C2—C3—C40.3 (2)C21—C11—C12—C13172.63 (12)
C2—C3—C4—C50.7 (2)C20—C11—C12—C1366.54 (15)
C2—C3—C4—Cl1179.70 (11)C10—C11—C12—C1354.13 (15)
C3—C4—C5—C60.2 (2)C1—N1—C13—C80.93 (19)
Cl1—C4—C5—C6179.21 (10)C1—N1—C13—C12179.64 (11)
N1—C1—C6—C5176.26 (12)C7—C8—C13—N11.2 (2)
C2—C1—C6—C52.18 (19)C9—C8—C13—N1178.91 (12)
N1—C1—C6—C71.61 (19)C7—C8—C13—C12179.39 (12)
C2—C1—C6—C7179.94 (12)C9—C8—C13—C120.50 (18)
C4—C5—C6—C11.2 (2)C11—C12—C13—N1154.25 (12)
C4—C5—C6—C7179.02 (13)C11—C12—C13—C826.30 (18)
C1—C6—C7—C81.27 (18)C8—C7—C14—C1972.90 (18)
C5—C6—C7—C8176.52 (12)C6—C7—C14—C19106.43 (15)
C1—C6—C7—C14179.35 (11)C8—C7—C14—C15112.34 (15)
C5—C6—C7—C142.86 (19)C6—C7—C14—C1568.33 (16)
C6—C7—C8—C130.03 (18)C19—C14—C15—C160.7 (2)
C14—C7—C8—C13179.29 (12)C7—C14—C15—C16175.57 (13)
C6—C7—C8—C9179.91 (12)C14—C15—C16—C170.8 (2)
C14—C7—C8—C90.6 (2)C15—C16—C17—C180.3 (2)
C7—C8—C9—O13.4 (2)C16—C17—C18—C190.2 (2)
C13—C8—C9—O1176.50 (14)C17—C18—C19—C140.2 (2)
C7—C8—C9—C10176.29 (13)C15—C14—C19—C180.2 (2)
C13—C8—C9—C103.83 (18)C7—C14—C19—C18175.01 (13)
O1—C9—C10—C11145.52 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.962 (19)2.39 (2)3.225 (2)145.6 (17)
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC21H18ClNO
Mr335.81
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.8375 (1), 10.0525 (1), 10.1076 (1)
α, β, γ (°)79.162 (1), 63.389 (1), 70.928 (1)
V3)843.59 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.933, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
18373, 4882, 3915
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.04
No. of reflections4882
No. of parameters289
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.47, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.962 (19)2.39 (2)3.225 (2)145.6 (17)
Symmetry code: (i) x, y, z1.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank USM for a Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688–o2689.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009). Acta Cryst. E65, o2665–o2666.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144–o3145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3237-o3238
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds