organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­bromo-N-(3-methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 November 2009; accepted 24 November 2009; online 28 November 2009)

The asymmetric unit of the title compound, C9H8Br3NO, contains two independent mol­ecules. The conformation of the N—H bond is anti to the 3-methyl substituent in the benzene ring in each mol­ecule. The structure shows both intra­molecular N—H⋯Br and inter­molecular N—H⋯O hydrogen bonding, the latter leading to the formation of helical supra­molecular chains along the b axis.

Related literature

For preparation of the compound, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). For our study of the effect of ring and side-chain substituents on the solid-state structures of N-aromatic amides, see: Gowda et al. (2007a[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007a). Z. Naturforsch. Teil A, 62, 91-100.],b[Gowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007b). Acta Cryst. E63, o2073-o2074.], 2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2226.]). For the structures of other amides, see: Brown (1966[Brown, C. J. (1966). Acta Cryst. 21, 442-445.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8Br3NO

  • Mr = 385.89

  • Monoclinic, P 21 /n

  • a = 11.360 (1) Å

  • b = 10.280 (1) Å

  • c = 20.298 (3) Å

  • β = 100.23 (1)°

  • V = 2332.7 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 12.58 mm−1

  • T = 299 K

  • 0.28 × 0.13 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.127, Tmax = 0.433

  • 4358 measured reflections

  • 4147 independent reflections

  • 2939 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.249

  • S = 1.04

  • 4147 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 1.60 e Å−3

  • Δρmin = −1.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.21 3.005 (11) 153
N1—H1N⋯Br1 0.86 2.60 3.068 (8) 115
N2—H2N⋯O1ii 0.86 2.11 2.886 (11) 150
N2—H2N⋯Br6 0.86 2.61 3.100 (8) 117
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of the ring and the side-chain substituents on the solid-state structures of N-aromatic amides (Gowda et al., 2007a, b, 2009), in the present work, the structure of N-(3-methylphenyl)2,2,2-tribromoacetamide (I) has been determined (Fig. 1). The asymmetric unit of the structure contains two independent molecules. The conformation of the N—H bond is anti to the 3-methyl substituent in the benzene ring in each molecule, similar to that observed in N-(3-methylphenyl)2,2,2-trichloroacetamide (Gowda et al., 2007a) and N-(3-methylphenyl)2,2,2-trimethylacetamide (Gowda et al., 2007b). Further, the conformation of the N—H bond in the structure is anti to the CO bond in the side-chain, similar to that observed in N-(phenyl)2,2,2-tribromoacetamide (Gowda et al., 2009) and other amides (Brown, 1966; Gowda et al., 2007a,b). The structure of (I) shows both the intramolecular N—H···Br and intermolecular N—H···O hydrogen bonding, Table 1. The packing diagram showing the hydrogen bonds (Table 1) and the supramolecular chains parallel to the b axis is shown in Fig. 2.

Related literature top

For preparation of the compound, see: Gowda et al. (2003). For our study of the effect of ring and side-chain substituents on the solid-state structures of N-aromatic amides, see: Gowda et al. (2007a,b, 2009). For the structures of other amides, see: Brown (1966).

Experimental top

The title compound was prepared from m-toluidine, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). Single crystals of (I) were obtained by the slow evaporation of its petroleum ether solution at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with N—H = 0.86 Å and C—H = 0.93–0.96 Å, and with Uiso = 1.2Ueq(carrier atom).

The residual electron-density features are located in the regions of Br2 and Br1. The highest peak was 0.84 Å from Br2 and the deepest hole was 0.99 Å from Br1.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structures of the two independent molecules of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing in (I) with hydrogen bonds shown as dashed lines.
2,2,2-Tribromo-N-(3-methylphenyl)acetamide top
Crystal data top
C9H8Br3NOF(000) = 1456
Mr = 385.89Dx = 2.198 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.360 (1) Åθ = 4.9–20.6°
b = 10.280 (1) ŵ = 12.58 mm1
c = 20.298 (3) ÅT = 299 K
β = 100.23 (1)°Rod, colourless
V = 2332.7 (5) Å30.28 × 0.13 × 0.08 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2939 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 67.0°, θmin = 4.2°
ω/2θ scansh = 131
Absorption correction: ψ scan
(North et al., 1968)
k = 120
Tmin = 0.127, Tmax = 0.433l = 2324
4358 measured reflections3 standard reflections every 120 min
4147 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1741P)2 + 2.28P]
where P = (Fo2 + 2Fc2)/3
4147 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = 1.66 e Å3
Crystal data top
C9H8Br3NOV = 2332.7 (5) Å3
Mr = 385.89Z = 8
Monoclinic, P21/nCu Kα radiation
a = 11.360 (1) ŵ = 12.58 mm1
b = 10.280 (1) ÅT = 299 K
c = 20.298 (3) Å0.28 × 0.13 × 0.08 mm
β = 100.23 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2939 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.059
Tmin = 0.127, Tmax = 0.4333 standard reflections every 120 min
4358 measured reflections intensity decay: 1.0%
4147 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.249H-atom parameters constrained
S = 1.04Δρmax = 1.60 e Å3
4147 reflectionsΔρmin = 1.66 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6706 (9)0.5084 (11)0.0373 (5)0.042 (2)
C20.6595 (10)0.4132 (11)0.0870 (5)0.049 (3)
H20.71560.34650.08320.059*
C30.5676 (11)0.4153 (13)0.1414 (6)0.059 (3)
C40.4854 (11)0.5134 (15)0.1451 (7)0.068 (3)
H40.42460.51960.18220.082*
C50.4922 (13)0.6036 (15)0.0939 (8)0.078 (4)
H50.43240.66600.09590.094*
C60.5834 (11)0.6036 (12)0.0409 (7)0.060 (3)
H60.58740.66630.00760.072*
C70.8238 (9)0.4032 (9)0.0454 (5)0.038 (2)
C80.9316 (9)0.4273 (9)0.1025 (5)0.041 (2)
C90.5614 (13)0.3160 (14)0.1948 (6)0.068 (4)
H9A0.50430.25030.18860.082*
H9B0.63870.27680.19280.082*
H9C0.53730.35650.23770.082*
Br11.01398 (11)0.58885 (12)0.09396 (6)0.0534 (4)
Br20.86902 (12)0.42753 (12)0.18531 (5)0.0544 (4)
Br31.04582 (12)0.28886 (14)0.10312 (7)0.0645 (4)
N10.7674 (7)0.5085 (8)0.0170 (4)0.0396 (18)
H1N0.79230.58290.03320.047*
O10.7944 (8)0.2926 (7)0.0314 (4)0.055 (2)
C100.1952 (9)0.0100 (10)0.0500 (5)0.041 (2)
C110.2737 (10)0.0681 (10)0.0959 (5)0.047 (2)
H110.32990.12090.08080.056*
C120.2665 (13)0.0654 (12)0.1619 (5)0.060 (3)
C130.1874 (14)0.0199 (13)0.1849 (6)0.070 (4)
H130.18800.02890.23050.084*
C140.1082 (14)0.0910 (12)0.1392 (7)0.068 (4)
H140.05010.14080.15430.082*
C150.1128 (12)0.0905 (11)0.0720 (6)0.056 (3)
H150.06190.14280.04220.067*
C160.2210 (9)0.0901 (9)0.0539 (5)0.041 (2)
C170.2661 (11)0.0687 (11)0.1209 (6)0.051 (3)
C180.3472 (14)0.1501 (18)0.2107 (7)0.084 (5)
H18A0.30640.22950.21740.101*
H18B0.41840.16960.19330.101*
H18C0.36820.10520.25260.101*
Br40.22259 (14)0.21315 (14)0.17949 (7)0.0697 (5)
Br50.44004 (14)0.05889 (19)0.09624 (9)0.0877 (6)
Br60.21012 (18)0.08796 (14)0.16568 (7)0.0792 (5)
N20.2067 (9)0.0130 (8)0.0181 (4)0.047 (2)
H2N0.20410.08760.03750.056*
O20.2111 (8)0.2020 (7)0.0359 (4)0.0539 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (5)0.053 (6)0.031 (5)0.005 (5)0.007 (4)0.005 (4)
C20.041 (5)0.068 (7)0.035 (5)0.000 (5)0.002 (4)0.003 (5)
C30.052 (6)0.083 (9)0.041 (6)0.015 (6)0.009 (5)0.008 (6)
C40.051 (7)0.089 (10)0.059 (8)0.008 (7)0.006 (6)0.007 (7)
C50.064 (8)0.084 (10)0.083 (11)0.020 (8)0.000 (7)0.020 (8)
C60.056 (7)0.052 (7)0.070 (8)0.010 (5)0.007 (6)0.005 (6)
C70.046 (5)0.037 (5)0.031 (5)0.005 (4)0.007 (4)0.004 (4)
C80.048 (6)0.043 (5)0.030 (5)0.001 (4)0.003 (4)0.002 (4)
C90.083 (9)0.087 (9)0.033 (6)0.020 (7)0.007 (6)0.004 (6)
Br10.0538 (7)0.0568 (7)0.0478 (7)0.0096 (5)0.0043 (5)0.0019 (5)
Br20.0668 (8)0.0680 (8)0.0295 (6)0.0008 (6)0.0110 (5)0.0026 (5)
Br30.0608 (8)0.0645 (8)0.0660 (8)0.0231 (6)0.0057 (6)0.0021 (6)
N10.036 (4)0.035 (4)0.045 (5)0.001 (3)0.000 (3)0.002 (3)
O10.078 (5)0.037 (4)0.043 (4)0.003 (4)0.009 (4)0.003 (3)
C100.057 (6)0.036 (5)0.031 (5)0.013 (4)0.010 (4)0.003 (4)
C110.055 (6)0.052 (6)0.033 (5)0.014 (5)0.005 (4)0.002 (4)
C120.080 (8)0.070 (8)0.026 (5)0.020 (6)0.004 (5)0.004 (5)
C130.110 (11)0.067 (8)0.037 (6)0.019 (8)0.029 (7)0.001 (6)
C140.108 (11)0.050 (7)0.059 (8)0.007 (7)0.051 (8)0.004 (5)
C150.077 (8)0.048 (6)0.046 (6)0.003 (6)0.024 (6)0.010 (5)
C160.052 (6)0.042 (5)0.028 (5)0.000 (4)0.006 (4)0.007 (4)
C170.058 (7)0.055 (6)0.043 (6)0.001 (5)0.016 (5)0.005 (5)
C180.086 (10)0.118 (13)0.042 (7)0.010 (9)0.007 (7)0.016 (8)
Br40.0915 (10)0.0705 (9)0.0531 (8)0.0183 (7)0.0289 (7)0.0263 (6)
Br50.0563 (8)0.1225 (15)0.0868 (12)0.0133 (8)0.0192 (8)0.0250 (10)
Br60.1327 (15)0.0674 (9)0.0405 (7)0.0189 (8)0.0231 (8)0.0114 (6)
N20.072 (6)0.035 (4)0.035 (4)0.001 (4)0.015 (4)0.003 (3)
O20.079 (5)0.033 (4)0.050 (4)0.003 (4)0.013 (4)0.002 (3)
Geometric parameters (Å, º) top
C1—C61.385 (16)C10—C151.382 (16)
C1—C21.394 (15)C10—N21.411 (12)
C1—N11.412 (12)C10—C111.419 (15)
C2—C31.379 (16)C11—C121.357 (15)
C2—H20.9300C11—H110.9300
C3—C41.367 (19)C12—C131.39 (2)
C3—C91.482 (17)C12—C181.503 (18)
C4—C51.38 (2)C13—C141.38 (2)
C4—H40.9300C13—H130.9300
C5—C61.354 (18)C14—C151.373 (16)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—H150.9300
C7—O11.205 (12)C16—O21.218 (12)
C7—N11.336 (12)C16—N21.311 (13)
C7—C81.548 (14)C16—C171.553 (14)
C8—Br31.925 (10)C17—Br61.902 (12)
C8—Br11.929 (10)C17—Br41.912 (11)
C8—Br21.938 (10)C17—Br51.953 (12)
C9—H9A0.9600C18—H18A0.9600
C9—H9B0.9600C18—H18B0.9600
C9—H9C0.9600C18—H18C0.9600
N1—H1N0.8600N2—H2N0.8600
C6—C1—C2119.0 (10)C15—C10—N2119.4 (9)
C6—C1—N1119.4 (10)C15—C10—C11120.6 (10)
C2—C1—N1121.5 (9)N2—C10—C11119.9 (10)
C3—C2—C1121.8 (11)C12—C11—C10119.7 (12)
C3—C2—H2119.1C12—C11—H11120.1
C1—C2—H2119.1C10—C11—H11120.1
C4—C3—C2117.9 (12)C11—C12—C13119.9 (12)
C4—C3—C9121.7 (12)C11—C12—C18120.2 (14)
C2—C3—C9120.4 (12)C13—C12—C18119.8 (12)
C3—C4—C5120.5 (12)C14—C13—C12119.3 (11)
C3—C4—H4119.8C14—C13—H13120.3
C5—C4—H4119.8C12—C13—H13120.3
C6—C5—C4121.9 (13)C15—C14—C13122.0 (12)
C6—C5—H5119.1C15—C14—H14119.0
C4—C5—H5119.1C13—C14—H14119.0
C5—C6—C1118.8 (13)C14—C15—C10118.1 (11)
C5—C6—H6120.6C14—C15—H15120.9
C1—C6—H6120.6C10—C15—H15120.9
O1—C7—N1124.8 (9)O2—C16—N2124.8 (9)
O1—C7—C8118.5 (8)O2—C16—C17117.3 (9)
N1—C7—C8116.6 (8)N2—C16—C17117.6 (9)
C7—C8—Br3109.2 (6)C16—C17—Br6113.8 (7)
C7—C8—Br1113.8 (6)C16—C17—Br4110.2 (7)
Br3—C8—Br1107.4 (5)Br6—C17—Br4109.5 (6)
C7—C8—Br2106.6 (7)C16—C17—Br5105.0 (7)
Br3—C8—Br2110.2 (5)Br6—C17—Br5108.4 (6)
Br1—C8—Br2109.6 (5)Br4—C17—Br5109.7 (6)
C3—C9—H9A109.5C12—C18—H18A109.5
C3—C9—H9B109.5C12—C18—H18B109.5
H9A—C9—H9B109.5H18A—C18—H18B109.5
C3—C9—H9C109.5C12—C18—H18C109.5
H9A—C9—H9C109.5H18A—C18—H18C109.5
H9B—C9—H9C109.5H18B—C18—H18C109.5
C7—N1—C1125.7 (9)C16—N2—C10124.5 (8)
C7—N1—H1N117.1C16—N2—H2N117.7
C1—N1—H1N117.1C10—N2—H2N117.7
C6—C1—C2—C33.6 (17)C15—C10—C11—C121.1 (16)
N1—C1—C2—C3177.6 (10)N2—C10—C11—C12176.5 (10)
C1—C2—C3—C41.0 (17)C10—C11—C12—C134.1 (17)
C1—C2—C3—C9177.3 (10)C10—C11—C12—C18178.5 (11)
C2—C3—C4—C53 (2)C11—C12—C13—C147 (2)
C9—C3—C4—C5178.9 (12)C18—C12—C13—C14175.8 (13)
C3—C4—C5—C64 (2)C12—C13—C14—C157 (2)
C4—C5—C6—C12 (2)C13—C14—C15—C104 (2)
C2—C1—C6—C52.3 (18)N2—C10—C15—C14176.3 (11)
N1—C1—C6—C5178.9 (11)C11—C10—C15—C140.9 (17)
O1—C7—C8—Br333.1 (12)O2—C16—C17—Br6151.8 (9)
N1—C7—C8—Br3149.3 (7)N2—C16—C17—Br634.1 (13)
O1—C7—C8—Br1153.1 (8)O2—C16—C17—Br428.4 (13)
N1—C7—C8—Br129.2 (11)N2—C16—C17—Br4157.5 (8)
O1—C7—C8—Br286.0 (10)O2—C16—C17—Br589.7 (10)
N1—C7—C8—Br291.6 (9)N2—C16—C17—Br584.4 (10)
O1—C7—N1—C15.2 (17)O2—C16—N2—C109.8 (18)
C8—C7—N1—C1177.3 (9)C17—C16—N2—C10163.8 (10)
C6—C1—N1—C7146.8 (11)C15—C10—N2—C16139.2 (11)
C2—C1—N1—C732.0 (15)C11—C10—N2—C1645.4 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.213.005 (11)153
N1—H1N···Br10.862.603.068 (8)115
N2—H2N···O1ii0.862.112.886 (11)150
N2—H2N···Br60.862.613.100 (8)117
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H8Br3NO
Mr385.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)11.360 (1), 10.280 (1), 20.298 (3)
β (°) 100.23 (1)
V3)2332.7 (5)
Z8
Radiation typeCu Kα
µ (mm1)12.58
Crystal size (mm)0.28 × 0.13 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.127, 0.433
No. of measured, independent and
observed [I > 2σ(I)] reflections
4358, 4147, 2939
Rint0.059
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.249, 1.04
No. of reflections4147
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.60, 1.66

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.213.005 (11)153
N1—H1N···Br10.862.603.068 (8)115
N2—H2N···O1ii0.862.112.886 (11)150
N2—H2N···Br60.862.613.100 (8)117
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

References

First citationBrown, C. J. (1966). Acta Cryst. 21, 442–445.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2226.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007a). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationGowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007b). Acta Cryst. E63, o2073–o2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds