metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[N′-(3,5-di­chloro-2-hy­droxy­benzyl­­idene)pyridine-4-carbohydrazide-κN](1,10-phenanthroline-κ2N,N′)cobalt(II) methanol monosolvate

aKey Laboratory of Nonferrous Metal Materials and Processing Technology, Department of Material and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China, and College of Chemical and Biological Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: lisa4.6@163.com

(Received 13 October 2009; accepted 11 November 2009; online 18 November 2009)

In the title compound, [CoCl2(C13H9Cl2N3O2)2(C12H8N2)]·CH3OH, the CoII atom is octahedrally coordinated by two N atoms from the pyridyl rings of the tridentate N′-(3,5-dichloro-2-hydroxy­benzyl­idene)pyridine-4-carbohydrazide (H2L) ligand, two N atoms from the 1,10-phenanthroline ligand and two chloride ions. The acyl­hydrazone groups are not involved into the coordination of the metal ion. In the crystal packing an extended three-dimensional network formed by N—H⋯Cl, N—H⋯O, O—H⋯N, O—H⋯N and O—H⋯Cl hydrogen bonds is observed.

Related literature

For acyl­hydrazone complexes containing heteroatoms, see: Adams et al. (2000[Adams, H., Fenton, D. E., Minardi, G., Mura, E., Pistuddi, A. M. & Solinas, C. (2000). Inorg. Chem. Commun. 3, 24-28.]); Kuriakose et al. (2007[Kuriakose, M., Prathapachandra Kurup, M. R. & Suresh, E. (2007). Polyhedron, 26, 2713-2718.]); Lobana et al. (2006[Lobana, T. S., Butcher, R. J., Castineiras, A., Bermejo, E. & Bharatam, P. V. (2006). Inorg. Chem. 45, 1535-1542.]); Mujeebur Rahman et al. (2005[Mujeebur Rahman, V. P., Sayeed, M., Ansari, W. H., Lemiere, G. (2005). Eur. J. Med. Chem. 40, 173-184.]). For a related structure, see: Armstrong et al. (2003[Armstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145-1156.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C13H9Cl2N3O2)2(C12H8N2)]·CH4O

  • Mr = 962.34

  • Orthorhombic, P n a 21

  • a = 20.797 (3) Å

  • b = 14.1641 (16) Å

  • c = 13.7952 (10) Å

  • V = 4063.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 298 K

  • 0.32 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.768, Tmax = 0.831

  • 17533 measured reflections

  • 7003 independent reflections

  • 3870 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.170

  • S = 1.03

  • 7003 reflections

  • 532 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3265 Friedel pairs

  • Flack parameter: 0.50 (3)

Table 1
Selected geometric parameters (Å, °)

Co1—N8 2.170 (7)
Co1—N7 2.170 (7)
Co1—N1 2.217 (6)
Co1—N4 2.235 (7)
Co1—Cl1 2.401 (2)
Co1—Cl2 2.419 (2)
N2—N3 1.368 (8)
N5—N6 1.389 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1i 0.86 2.56 3.280 (7) 142
N5—H5⋯O5 0.86 1.91 2.739 (11) 162
O2—H2A⋯N3 0.82 1.85 2.562 (8) 145
O4—H4⋯N6 0.82 1.88 2.592 (9) 145
O5—H5A⋯Cl2ii 0.82 2.24 3.052 (9) 171
Symmetry codes: (i) [-x, -y+1, z-{\script{1\over 2}}]; (ii) [-x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the field of coordination chemistry, continuing interest in the acylhydrazones transition metal complexes stems from their analytical, catalytic chemistry and as models for metalloenzymes. Acylhydrazone ligands can act as bidentate, tridentate or tetradentate ligands depending on the nature of heterocyclic ring substituents attached to the hydrazone unit.

In (I), there is methanol solvate molecule, and the CoII atom is coordinated by two N atoms from pyridyls of H2L and two N atoms from 1,10-phenanthroline and two Cl ions, which form a slightly distorted tetragonal-dipyramid geometry (Fig. 1). From the bond lengths of (I), we can find the N atoms from 1,10-phenanthroline possess stronger coordinating capability compared to the pyridyls. The acylhydrazone of (I) is a kind of polydentate ligand which contains three heteroatoms. However, the acylhydrazone groups are not involved in the coordination. On the other hand, this phenomenon illustrates the pyridyl N atom of H2L has a stronger coordinating capability than the acylhydrazone group. Also in the structure of 2-pyridinecarbaldehyde isonicotinoylhydrazone and manganese chloride at 2:1 mole ratio no coordination of the acylhydrazone groups with the metal ion was observed (Armstrong et al., 2003). The three-dimensional network through N–H···Cl, N–H···O, O–H···N, O–H···N and O–H···Cl hydrogen bonds in the packing of (I) is shown in Figure 2.

Related literature top

For acylhydrazone complexes containing heteroatoms, see: Adams et al. (2000); Kuriakose et al. (2007); Lobana et al. (2006); Mujeebur Rahman et al. (2005). For a related structure, see: Armstrong et al. (2003).

Experimental top

An EtOH solution (30 ml) of 3,5-Dichlorosalicylaldehyde (10 mmol) was added dropwise to the EtOH solution (20 ml) of 4-Pyridinecarboxylic acid hydrazide (10 mmol) with stirring at ca 75\ % C for 3 h. The white precipitates was removed by filtration and recrystallized from EtOH solution. Then a mixture of the ligand (0.5 mmol) and cobalt chloride (0.5 mmol) in MeOH (35 ml) was stirred at ca 65\ % C for 45 min to give the red precipitates. Add 10 ml MeOH solution of 1,10-phenanthroline (0.5 mmol) to the mixture and stirred for 1.5 h. The red precipitate decreased gradually. Then the mixture was filtrated and ether evaporated slowly to afford almost quantitatively red crystals of mononuclear complex at ambient temperature after several days.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids. Carbon-bound H atoms have been omitted.
[Figure 2] Fig. 2. Three-dimensional network in crystal packing of (I), broken lines show N–H···Cl, N–H···O, O–H···N, O–H···N and O–H···Cl hydrogen bonds.
Dichlorido[N'-(3,5-dichloro-2-hydroxybenzylidene)pyridine-4- carbohydrazide-κN](1,10-phenanthroline- κ2N,N')cobalt(II) methanol monosolvate top
Crystal data top
[CoCl2(C13H9Cl2N3O2)2(C12H8N2)]·CH4OF(000) = 1956
Mr = 962.34Dx = 1.573 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3420 reflections
a = 20.797 (3) Åθ = 2.3–25.2°
b = 14.1641 (16) ŵ = 0.87 mm1
c = 13.7952 (10) ÅT = 298 K
V = 4063.7 (7) Å3Block, red
Z = 40.32 × 0.23 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7003 independent reflections
Radiation source: fine-focus sealed tube3870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1624
Tmin = 0.768, Tmax = 0.831k = 1615
17533 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0742P)2 + 2.7173P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7003 reflectionsΔρmax = 0.51 e Å3
532 parametersΔρmin = 0.57 e Å3
1 restraintAbsolute structure: Flack (1983), 3259 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.50 (3)
Crystal data top
[CoCl2(C13H9Cl2N3O2)2(C12H8N2)]·CH4OV = 4063.7 (7) Å3
Mr = 962.34Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.797 (3) ŵ = 0.87 mm1
b = 14.1641 (16) ÅT = 298 K
c = 13.7952 (10) Å0.32 × 0.23 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7003 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3870 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.831Rint = 0.052
17533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.170Δρmax = 0.51 e Å3
S = 1.03Δρmin = 0.57 e Å3
7003 reflectionsAbsolute structure: Flack (1983), 3259 Friedel pairs
532 parametersAbsolute structure parameter: 0.50 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00635 (5)0.61639 (7)0.39038 (8)0.0510 (3)
Cl10.05943 (11)0.47788 (16)0.32986 (17)0.0678 (6)
Cl20.06639 (11)0.53739 (18)0.50061 (16)0.0687 (6)
Cl30.44946 (12)0.6158 (2)0.3164 (2)0.0958 (9)
Cl40.26296 (14)0.6306 (2)0.57949 (18)0.1032 (10)
Cl50.48041 (14)0.6604 (3)1.0861 (2)0.1090 (11)
Cl60.28736 (17)0.6082 (2)1.3338 (2)0.1105 (11)
N10.0618 (3)0.6114 (4)0.2669 (5)0.0461 (16)
N20.1804 (3)0.6209 (4)0.0562 (5)0.0560 (18)
H20.14020.61790.07070.067*
N30.2272 (3)0.6245 (4)0.1259 (4)0.0526 (17)
N40.0816 (3)0.6290 (4)0.5052 (5)0.0532 (17)
N50.2138 (4)0.6320 (5)0.8120 (5)0.066 (2)
H50.17400.63260.82890.079*
N60.2631 (3)0.6351 (5)0.8798 (5)0.0615 (18)
N70.0302 (3)0.7527 (5)0.4367 (5)0.0557 (17)
N80.0619 (3)0.7165 (5)0.3057 (4)0.0503 (17)
O10.2578 (3)0.6306 (5)0.0585 (4)0.0735 (19)
O20.3461 (3)0.6239 (4)0.1741 (4)0.0676 (16)
H2A0.31560.62640.13660.101*
O30.2871 (3)0.6217 (5)0.6922 (5)0.091 (2)
O40.3802 (3)0.6600 (5)0.9387 (5)0.083 (2)
H40.35020.66250.90020.125*
O50.0976 (4)0.6507 (7)0.9035 (7)0.117 (3)
H5A0.08710.59850.92370.175*
C10.2012 (4)0.6224 (6)0.0372 (6)0.052 (2)
C20.1235 (4)0.6273 (6)0.2826 (6)0.058 (2)
H2B0.13710.63690.34610.070*
C30.1693 (4)0.6304 (6)0.2090 (6)0.057 (2)
H30.21240.64130.22300.069*
C40.1489 (3)0.6168 (5)0.1149 (6)0.0421 (18)
C50.0846 (4)0.5984 (5)0.0988 (6)0.050 (2)
H5B0.06940.58840.03620.060*
C60.0435 (4)0.5950 (5)0.1764 (6)0.0484 (19)
H60.00060.58040.16490.058*
C70.2105 (4)0.6256 (6)0.2147 (6)0.054 (2)
H70.16710.62530.23090.065*
C80.2581 (4)0.6271 (6)0.2900 (6)0.051 (2)
C90.3244 (4)0.6246 (6)0.2658 (5)0.051 (2)
C100.3694 (4)0.6209 (5)0.3420 (6)0.054 (2)
C110.3497 (5)0.6219 (6)0.4368 (7)0.067 (3)
H110.37980.61950.48660.081*
C120.2849 (5)0.6264 (6)0.4578 (6)0.065 (2)
C130.2408 (4)0.6280 (6)0.3868 (6)0.062 (2)
H130.19740.62970.40310.074*
C140.2316 (4)0.6278 (6)0.7178 (7)0.059 (2)
C150.0667 (4)0.6362 (6)0.5984 (6)0.062 (2)
H150.02350.63970.61570.074*
C160.1127 (4)0.6387 (7)0.6712 (7)0.069 (3)
H160.10050.64650.73560.082*
C170.1767 (4)0.6297 (6)0.6471 (6)0.054 (2)
C180.1929 (4)0.6216 (6)0.5497 (6)0.062 (2)
H180.23560.61600.53070.074*
C190.1443 (4)0.6221 (6)0.4821 (6)0.059 (2)
H190.15530.61740.41690.071*
C200.2453 (5)0.6247 (6)0.9690 (7)0.069 (3)
H200.20200.61600.98350.083*
C210.2929 (5)0.6265 (6)1.0473 (6)0.062 (3)
C220.3576 (5)0.6424 (6)1.0270 (7)0.064 (2)
C230.3996 (4)0.6434 (6)1.1069 (8)0.068 (3)
C240.3773 (5)0.6304 (6)1.2004 (7)0.072 (3)
H240.40590.63051.25230.086*
C250.3152 (6)0.6180 (6)1.2155 (7)0.076 (3)
C260.2733 (5)0.6152 (6)1.1395 (7)0.069 (3)
H260.22980.60511.15170.083*
C270.0752 (4)0.7704 (7)0.5004 (7)0.067 (2)
H270.09560.71930.52930.080*
C280.0948 (5)0.8606 (7)0.5279 (8)0.075 (3)
H280.12740.86930.57310.090*
C290.0642 (5)0.9364 (9)0.4857 (7)0.084 (3)
H290.07660.99760.50140.101*
C300.0152 (4)0.9214 (7)0.4199 (6)0.062 (2)
C310.0011 (4)0.8272 (5)0.3967 (7)0.0502 (17)
C320.0493 (4)0.8083 (6)0.3272 (6)0.051 (2)
C330.0833 (5)0.8831 (6)0.2830 (6)0.058 (2)
C340.1290 (4)0.8613 (7)0.2135 (7)0.065 (3)
H340.15280.90890.18390.078*
C350.1386 (4)0.7700 (8)0.1893 (7)0.072 (3)
H350.16790.75420.14100.087*
C360.1037 (4)0.6990 (7)0.2380 (6)0.068 (2)
H360.11100.63640.22070.082*
C370.0213 (5)0.9959 (7)0.3775 (8)0.077 (3)
H370.01301.05800.39550.092*
C380.0686 (5)0.9776 (7)0.3105 (8)0.085 (3)
H380.09121.02750.28280.102*
C390.0539 (9)0.7183 (13)0.9363 (15)0.190 (8)
H39A0.04330.70581.00280.286*
H39B0.01560.71550.89760.286*
H39C0.07270.77990.93100.286*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0473 (6)0.0645 (6)0.0411 (5)0.0011 (5)0.0037 (5)0.0018 (6)
Cl10.0679 (14)0.0748 (14)0.0607 (13)0.0178 (11)0.0068 (11)0.0051 (12)
Cl20.0650 (14)0.0895 (17)0.0516 (13)0.0075 (12)0.0000 (11)0.0098 (12)
Cl30.0489 (14)0.148 (3)0.091 (2)0.0081 (15)0.0042 (14)0.0209 (19)
Cl40.090 (2)0.179 (3)0.0411 (15)0.0049 (18)0.0026 (12)0.0099 (17)
Cl50.0721 (19)0.146 (3)0.109 (2)0.0119 (18)0.0259 (17)0.036 (2)
Cl60.146 (3)0.131 (3)0.0541 (16)0.0219 (19)0.0119 (18)0.0011 (18)
N10.040 (4)0.059 (4)0.039 (4)0.008 (3)0.004 (3)0.003 (3)
N20.043 (4)0.084 (5)0.040 (4)0.005 (3)0.012 (3)0.002 (4)
N30.049 (4)0.073 (4)0.035 (4)0.006 (3)0.008 (3)0.003 (3)
N40.055 (4)0.062 (4)0.042 (4)0.011 (3)0.000 (3)0.007 (3)
N50.061 (5)0.092 (5)0.044 (5)0.005 (4)0.013 (4)0.005 (4)
N60.068 (5)0.071 (5)0.046 (5)0.014 (3)0.020 (4)0.003 (4)
N70.042 (4)0.086 (5)0.039 (4)0.003 (4)0.001 (3)0.008 (4)
N80.041 (4)0.070 (5)0.039 (4)0.008 (3)0.005 (3)0.000 (3)
O10.050 (4)0.116 (6)0.055 (4)0.016 (4)0.002 (3)0.015 (4)
O20.048 (3)0.106 (5)0.049 (4)0.006 (3)0.002 (3)0.006 (3)
O30.049 (4)0.166 (7)0.056 (4)0.010 (4)0.015 (3)0.018 (4)
O40.069 (4)0.110 (5)0.070 (5)0.019 (4)0.010 (4)0.010 (4)
O50.083 (5)0.166 (8)0.102 (6)0.027 (5)0.005 (5)0.039 (6)
C10.050 (5)0.059 (5)0.046 (5)0.011 (4)0.007 (4)0.013 (4)
C20.058 (5)0.086 (6)0.031 (4)0.015 (5)0.009 (4)0.001 (4)
C30.043 (5)0.088 (6)0.041 (5)0.012 (4)0.002 (4)0.017 (4)
C40.036 (4)0.046 (4)0.044 (4)0.007 (3)0.006 (4)0.011 (4)
C50.050 (5)0.059 (5)0.041 (5)0.004 (4)0.001 (4)0.001 (4)
C60.042 (4)0.061 (5)0.042 (5)0.001 (4)0.000 (4)0.001 (4)
C70.052 (5)0.074 (6)0.036 (5)0.005 (4)0.014 (4)0.001 (4)
C80.051 (5)0.063 (6)0.038 (5)0.006 (4)0.003 (4)0.002 (4)
C90.046 (5)0.071 (6)0.036 (5)0.001 (4)0.005 (4)0.005 (4)
C100.041 (4)0.063 (5)0.057 (6)0.003 (4)0.012 (4)0.010 (5)
C110.061 (6)0.099 (8)0.042 (5)0.009 (5)0.016 (5)0.001 (5)
C120.072 (7)0.090 (7)0.034 (5)0.010 (5)0.007 (4)0.009 (4)
C130.055 (5)0.090 (7)0.041 (5)0.015 (5)0.008 (4)0.003 (5)
C140.052 (6)0.073 (6)0.052 (6)0.002 (5)0.017 (4)0.000 (4)
C150.047 (5)0.096 (7)0.042 (5)0.005 (5)0.009 (4)0.000 (5)
C160.065 (6)0.106 (7)0.034 (5)0.001 (5)0.011 (5)0.006 (5)
C170.046 (5)0.064 (5)0.051 (5)0.003 (4)0.009 (4)0.010 (4)
C180.045 (5)0.102 (7)0.037 (5)0.000 (5)0.009 (4)0.006 (5)
C190.050 (5)0.089 (6)0.039 (5)0.009 (5)0.009 (4)0.000 (4)
C200.067 (6)0.083 (7)0.058 (6)0.013 (5)0.016 (5)0.006 (5)
C210.083 (8)0.055 (5)0.048 (6)0.015 (5)0.024 (5)0.010 (4)
C220.054 (6)0.079 (6)0.059 (6)0.012 (5)0.008 (5)0.015 (5)
C230.053 (6)0.070 (6)0.080 (7)0.012 (5)0.017 (5)0.018 (5)
C240.085 (8)0.076 (7)0.056 (6)0.016 (6)0.023 (5)0.018 (5)
C250.092 (8)0.071 (7)0.065 (7)0.022 (6)0.015 (6)0.003 (5)
C260.086 (7)0.064 (6)0.057 (6)0.020 (5)0.020 (5)0.010 (5)
C270.062 (6)0.080 (7)0.059 (6)0.007 (5)0.007 (5)0.004 (5)
C280.046 (6)0.087 (8)0.092 (8)0.012 (5)0.005 (5)0.022 (7)
C290.083 (7)0.103 (9)0.066 (7)0.047 (7)0.018 (6)0.034 (6)
C300.054 (5)0.075 (6)0.057 (6)0.011 (5)0.018 (4)0.010 (5)
C310.043 (4)0.064 (5)0.044 (4)0.002 (4)0.009 (4)0.008 (5)
C320.045 (5)0.067 (5)0.040 (5)0.002 (4)0.013 (4)0.001 (4)
C330.070 (6)0.062 (6)0.043 (5)0.006 (5)0.018 (4)0.003 (4)
C340.054 (6)0.077 (7)0.064 (6)0.003 (5)0.006 (5)0.022 (5)
C350.053 (5)0.099 (8)0.064 (6)0.000 (5)0.007 (5)0.017 (6)
C360.069 (6)0.081 (7)0.055 (6)0.003 (5)0.003 (5)0.002 (5)
C370.093 (7)0.059 (5)0.079 (7)0.001 (5)0.013 (6)0.004 (5)
C380.106 (9)0.069 (7)0.081 (8)0.000 (6)0.018 (7)0.002 (6)
C390.155 (17)0.21 (2)0.201 (19)0.031 (14)0.026 (15)0.014 (17)
Geometric parameters (Å, º) top
Co1—N82.170 (7)C10—C111.370 (12)
Co1—N72.170 (7)C11—C121.382 (13)
Co1—N12.217 (6)C11—H110.9300
Co1—N42.235 (7)C12—C131.343 (12)
Co1—Cl12.401 (2)C13—H130.9300
Co1—Cl22.419 (2)C14—C171.501 (11)
Cl3—C101.704 (8)C15—C161.389 (11)
Cl4—C121.740 (9)C15—H150.9300
Cl5—C231.721 (10)C16—C171.378 (11)
Cl6—C251.736 (11)C16—H160.9300
N1—C21.321 (9)C17—C181.390 (11)
N1—C61.325 (10)C18—C191.376 (11)
N2—C11.359 (10)C18—H180.9300
N2—N31.368 (8)C19—H190.9300
N2—H20.8600C20—C211.465 (12)
N3—C71.273 (10)C20—H200.9300
N4—C151.327 (10)C21—C261.345 (13)
N4—C191.344 (10)C21—C221.393 (13)
N5—C141.351 (11)C22—C231.407 (12)
N5—N61.389 (9)C23—C241.383 (14)
N5—H50.8600C24—C251.321 (14)
N6—C201.293 (11)C24—H240.9300
N7—C271.309 (11)C25—C261.365 (13)
N7—C311.358 (10)C26—H260.9300
N8—C361.301 (10)C27—C281.393 (12)
N8—C321.360 (10)C27—H270.9300
O1—C11.220 (9)C28—C291.377 (14)
O2—C91.344 (9)C28—H280.9300
O2—H2A0.8200C29—C301.382 (12)
O3—C141.209 (10)C29—H290.9300
O4—C221.329 (11)C30—C311.413 (11)
O4—H40.8200C30—C371.426 (12)
O5—C391.396 (18)C31—C321.412 (11)
O5—H5A0.8200C32—C331.412 (11)
C1—C41.528 (11)C33—C341.386 (12)
C2—C31.392 (11)C33—C381.424 (12)
C2—H2B0.9300C34—C351.350 (12)
C3—C41.378 (10)C34—H340.9300
C3—H30.9300C35—C361.411 (12)
C4—C51.382 (10)C35—H350.9300
C5—C61.370 (10)C36—H360.9300
C5—H5B0.9300C37—C381.374 (14)
C6—H60.9300C37—H370.9300
C7—C81.435 (11)C38—H380.9300
C7—H70.9300C39—H39A0.9600
C8—C131.383 (11)C39—H39B0.9600
C8—C91.418 (11)C39—H39C0.9600
C9—C101.408 (11)
N8—Co1—N776.3 (3)N5—C14—C17114.5 (8)
N8—Co1—N187.0 (2)N4—C15—C16122.7 (8)
N7—Co1—N191.8 (2)N4—C15—H15118.6
N8—Co1—N487.5 (2)C16—C15—H15118.6
N7—Co1—N488.0 (2)C17—C16—C15119.3 (8)
N1—Co1—N4174.4 (3)C17—C16—H16120.3
N8—Co1—Cl195.86 (19)C15—C16—H16120.3
N7—Co1—Cl1171.9 (2)C16—C17—C18118.3 (7)
N1—Co1—Cl190.04 (17)C16—C17—C14125.4 (8)
N4—Co1—Cl189.40 (17)C18—C17—C14116.3 (8)
N8—Co1—Cl2166.75 (19)C19—C18—C17118.5 (8)
N7—Co1—Cl290.4 (2)C19—C18—H18120.7
N1—Co1—Cl293.95 (18)C17—C18—H18120.7
N4—Co1—Cl291.69 (19)N4—C19—C18123.5 (8)
Cl1—Co1—Cl297.36 (9)N4—C19—H19118.3
C2—N1—C6117.5 (7)C18—C19—H19118.3
C2—N1—Co1119.3 (5)N6—C20—C21120.4 (9)
C6—N1—Co1123.1 (5)N6—C20—H20119.8
C1—N2—N3116.1 (7)C21—C20—H20119.8
C1—N2—H2122.0C26—C21—C22120.1 (9)
N3—N2—H2122.0C26—C21—C20119.3 (10)
C7—N3—N2118.9 (7)C22—C21—C20120.5 (9)
C15—N4—C19117.6 (7)O4—C22—C21123.8 (8)
C15—N4—Co1121.9 (5)O4—C22—C23119.7 (9)
C19—N4—Co1120.3 (5)C21—C22—C23116.4 (9)
C14—N5—N6116.5 (7)C24—C23—C22121.4 (9)
C14—N5—H5121.7C24—C23—Cl5120.1 (8)
N6—N5—H5121.7C22—C23—Cl5118.5 (8)
C20—N6—N5115.2 (8)C25—C24—C23119.5 (9)
C27—N7—C31117.8 (8)C25—C24—H24120.2
C27—N7—Co1128.3 (6)C23—C24—H24120.2
C31—N7—Co1113.8 (5)C24—C25—C26120.5 (11)
C36—N8—C32117.9 (7)C24—C25—Cl6119.0 (8)
C36—N8—Co1128.2 (6)C26—C25—Cl6120.5 (9)
C32—N8—Co1113.9 (5)C21—C26—C25122.0 (11)
C9—O2—H2A109.5C21—C26—H26119.0
C22—O4—H4109.5C25—C26—H26119.0
C39—O5—H5A109.5N7—C27—C28124.7 (9)
O1—C1—N2122.5 (7)N7—C27—H27117.7
O1—C1—C4121.5 (7)C28—C27—H27117.7
N2—C1—C4116.0 (7)C29—C28—C27117.7 (9)
N1—C2—C3123.4 (8)C29—C28—H28121.2
N1—C2—H2B118.3C27—C28—H28121.2
C3—C2—H2B118.3C28—C29—C30119.9 (9)
C4—C3—C2118.2 (7)C28—C29—H29120.0
C4—C3—H3120.9C30—C29—H29120.0
C2—C3—H3120.9C29—C30—C31118.1 (9)
C3—C4—C5118.4 (7)C29—C30—C37123.3 (10)
C3—C4—C1115.8 (7)C31—C30—C37118.5 (8)
C5—C4—C1125.8 (7)N7—C31—C32118.0 (7)
C6—C5—C4119.0 (7)N7—C31—C30121.8 (8)
C6—C5—H5B120.5C32—C31—C30120.2 (8)
C4—C5—H5B120.5N8—C32—C31117.7 (7)
N1—C6—C5123.5 (7)N8—C32—C33121.8 (8)
N1—C6—H6118.3C31—C32—C33120.4 (8)
C5—C6—H6118.3C34—C33—C32118.4 (9)
N3—C7—C8120.6 (8)C34—C33—C38122.8 (9)
N3—C7—H7119.7C32—C33—C38118.9 (9)
C8—C7—H7119.7C35—C34—C33119.1 (9)
C13—C8—C9118.8 (7)C35—C34—H34120.5
C13—C8—C7121.2 (8)C33—C34—H34120.5
C9—C8—C7120.0 (7)C34—C35—C36119.3 (9)
O2—C9—C10118.6 (7)C34—C35—H35120.3
O2—C9—C8123.3 (7)C36—C35—H35120.3
C10—C9—C8118.1 (7)N8—C36—C35123.4 (9)
C11—C10—C9120.9 (8)N8—C36—H36118.3
C11—C10—Cl3119.3 (7)C35—C36—H36118.3
C9—C10—Cl3119.8 (7)C38—C37—C30121.2 (9)
C10—C11—C12119.5 (8)C38—C37—H37119.4
C10—C11—H11120.3C30—C37—H37119.4
C12—C11—H11120.3C37—C38—C33120.6 (10)
C13—C12—C11121.0 (8)C37—C38—H38119.7
C13—C12—Cl4121.7 (8)C33—C38—H38119.7
C11—C12—Cl4117.4 (7)O5—C39—H39A109.5
C12—C13—C8121.7 (8)O5—C39—H39B109.5
C12—C13—H13119.1H39A—C39—H39B109.5
C8—C13—H13119.1O5—C39—H39C109.5
O3—C14—N5123.0 (8)H39A—C39—H39C109.5
O3—C14—C17122.4 (8)H39B—C39—H39C109.5
N8—Co1—N1—C2126.7 (6)C9—C8—C13—C120.1 (14)
N7—Co1—N1—C250.5 (6)C7—C8—C13—C12177.8 (8)
N4—Co1—N1—C2138 (2)N6—N5—C14—O34.1 (14)
Cl1—Co1—N1—C2137.5 (6)N6—N5—C14—C17177.0 (7)
Cl2—Co1—N1—C240.1 (6)C19—N4—C15—C161.3 (13)
N8—Co1—N1—C651.9 (6)Co1—N4—C15—C16176.3 (7)
N7—Co1—N1—C6128.1 (6)N4—C15—C16—C172.7 (14)
N4—Co1—N1—C640 (3)C15—C16—C17—C182.2 (13)
Cl1—Co1—N1—C643.9 (6)C15—C16—C17—C14177.8 (8)
Cl2—Co1—N1—C6141.3 (6)O3—C14—C17—C16178.4 (9)
C1—N2—N3—C7178.4 (7)N5—C14—C17—C162.6 (13)
N8—Co1—N4—C15136.9 (7)O3—C14—C17—C181.6 (13)
N7—Co1—N4—C1560.5 (7)N5—C14—C17—C18177.4 (8)
N1—Co1—N4—C15148 (2)C16—C17—C18—C190.6 (13)
Cl1—Co1—N4—C15127.2 (6)C14—C17—C18—C19179.4 (8)
Cl2—Co1—N4—C1529.9 (6)C15—N4—C19—C180.4 (13)
N8—Co1—N4—C1948.3 (6)Co1—N4—C19—C18174.7 (7)
N7—Co1—N4—C19124.7 (6)C17—C18—C19—N40.7 (14)
N1—Co1—N4—C1937 (3)N5—N6—C20—C21179.9 (7)
Cl1—Co1—N4—C1947.6 (6)N6—C20—C21—C26179.7 (9)
Cl2—Co1—N4—C19145.0 (6)N6—C20—C21—C222.0 (13)
C14—N5—N6—C20170.0 (8)C26—C21—C22—O4175.7 (9)
N8—Co1—N7—C27179.8 (8)C20—C21—C22—O42.5 (14)
N1—Co1—N7—C2793.3 (7)C26—C21—C22—C231.5 (13)
N4—Co1—N7—C2792.3 (7)C20—C21—C22—C23179.7 (8)
Cl1—Co1—N7—C27164.0 (10)O4—C22—C23—C24176.4 (9)
Cl2—Co1—N7—C270.6 (7)C21—C22—C23—C240.8 (13)
N8—Co1—N7—C313.9 (5)O4—C22—C23—Cl54.0 (12)
N1—Co1—N7—C3190.4 (5)C21—C22—C23—Cl5178.8 (6)
N4—Co1—N7—C3184.0 (6)C22—C23—C24—C250.8 (14)
Cl1—Co1—N7—C3112.3 (17)Cl5—C23—C24—C25179.6 (7)
Cl2—Co1—N7—C31175.6 (5)C23—C24—C25—C261.9 (15)
N7—Co1—N8—C36175.4 (7)C23—C24—C25—Cl6176.6 (7)
N1—Co1—N8—C3682.8 (7)C22—C21—C26—C250.5 (13)
N4—Co1—N8—C3696.1 (7)C20—C21—C26—C25178.7 (8)
Cl1—Co1—N8—C366.9 (7)C24—C25—C26—C211.2 (14)
Cl2—Co1—N8—C36177.2 (6)Cl6—C25—C26—C21177.2 (7)
N7—Co1—N8—C323.5 (5)C31—N7—C27—C282.1 (13)
N1—Co1—N8—C3296.0 (5)Co1—N7—C27—C28178.3 (7)
N4—Co1—N8—C3285.1 (5)N7—C27—C28—C290.6 (15)
Cl1—Co1—N8—C32174.2 (5)C27—C28—C29—C301.2 (14)
Cl2—Co1—N8—C321.6 (11)C28—C29—C30—C311.3 (13)
N3—N2—C1—O13.2 (11)C28—C29—C30—C37176.2 (9)
N3—N2—C1—C4179.1 (6)C27—N7—C31—C32179.4 (7)
C6—N1—C2—C32.0 (12)Co1—N7—C31—C323.9 (9)
Co1—N1—C2—C3176.7 (7)C27—N7—C31—C302.0 (12)
N1—C2—C3—C40.5 (14)Co1—N7—C31—C30178.7 (6)
C2—C3—C4—C51.7 (13)C29—C30—C31—N70.3 (12)
C2—C3—C4—C1179.2 (7)C37—C30—C31—N7177.9 (8)
O1—C1—C4—C35.7 (12)C29—C30—C31—C32177.6 (7)
N2—C1—C4—C3172.0 (8)C37—C30—C31—C324.8 (12)
O1—C1—C4—C5173.3 (8)C36—N8—C32—C31176.3 (7)
N2—C1—C4—C59.0 (11)Co1—N8—C32—C312.7 (9)
C3—C4—C5—C60.5 (12)C36—N8—C32—C334.4 (11)
C1—C4—C5—C6179.5 (7)Co1—N8—C32—C33176.6 (6)
C2—N1—C6—C53.4 (12)N7—C31—C32—N80.9 (11)
Co1—N1—C6—C5175.3 (6)C30—C31—C32—N8178.3 (7)
C4—C5—C6—N12.1 (12)N7—C31—C32—C33179.8 (7)
N2—N3—C7—C8178.5 (7)C30—C31—C32—C332.4 (12)
N3—C7—C8—C13179.8 (9)N8—C32—C33—C342.3 (12)
N3—C7—C8—C91.9 (12)C31—C32—C33—C34178.4 (8)
C13—C8—C9—O2179.8 (8)N8—C32—C33—C38178.6 (8)
C7—C8—C9—O22.3 (12)C31—C32—C33—C380.7 (12)
C13—C8—C9—C101.5 (12)C32—C33—C34—C351.2 (13)
C7—C8—C9—C10176.5 (7)C38—C33—C34—C35177.8 (9)
O2—C9—C10—C11179.7 (8)C33—C34—C35—C362.5 (14)
C8—C9—C10—C111.5 (12)C32—N8—C36—C353.1 (12)
O2—C9—C10—Cl30.1 (11)Co1—N8—C36—C35178.1 (6)
C8—C9—C10—Cl3178.9 (6)C34—C35—C36—N80.3 (14)
C9—C10—C11—C120.2 (13)C29—C30—C37—C38178.3 (9)
Cl3—C10—C11—C12179.7 (7)C31—C30—C37—C384.3 (14)
C10—C11—C12—C131.3 (14)C30—C37—C38—C331.3 (15)
C10—C11—C12—Cl4178.3 (7)C34—C33—C38—C37177.8 (9)
C11—C12—C13—C81.3 (15)C32—C33—C38—C371.2 (14)
Cl4—C12—C13—C8178.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.862.563.280 (7)142
N5—H5···O50.861.912.739 (11)162
O2—H2A···N30.821.852.562 (8)145
O4—H4···N60.821.882.592 (9)145
O5—H5A···Cl2ii0.822.243.052 (9)171
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[CoCl2(C13H9Cl2N3O2)2(C12H8N2)]·CH4O
Mr962.34
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)20.797 (3), 14.1641 (16), 13.7952 (10)
V3)4063.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.32 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
17533, 7003, 3870
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.170, 1.03
No. of reflections7003
No. of parameters532
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.57
Absolute structureFlack (1983), 3259 Friedel pairs
Absolute structure parameter0.50 (3)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N82.170 (7)Co1—Cl12.401 (2)
Co1—N72.170 (7)Co1—Cl22.419 (2)
Co1—N12.217 (6)N2—N31.368 (8)
Co1—N42.235 (7)N5—N61.389 (9)
N8—Co1—N776.3 (3)N1—Co1—Cl190.04 (17)
N8—Co1—N187.0 (2)N4—Co1—Cl189.40 (17)
N7—Co1—N191.8 (2)N8—Co1—Cl2166.75 (19)
N8—Co1—N487.5 (2)N7—Co1—Cl290.4 (2)
N7—Co1—N488.0 (2)N1—Co1—Cl293.95 (18)
N1—Co1—N4174.4 (3)N4—Co1—Cl291.69 (19)
N8—Co1—Cl195.86 (19)Cl1—Co1—Cl297.36 (9)
N7—Co1—Cl1171.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.862.563.280 (7)142.1
N5—H5···O50.861.912.739 (11)161.6
O2—H2A···N30.821.852.562 (8)145.3
O4—H4···N60.821.882.592 (9)145.4
O5—H5A···Cl2ii0.822.243.052 (9)170.9
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

We acknowledge financial support by the Key Laboratory of Non-Ferrous Metal Materials and New Processing Technology, Ministry of Education, China.

References

First citationAdams, H., Fenton, D. E., Minardi, G., Mura, E., Pistuddi, A. M. & Solinas, C. (2000). Inorg. Chem. Commun. 3, 24–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationArmstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145–1156.  CSD CrossRef Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKuriakose, M., Prathapachandra Kurup, M. R. & Suresh, E. (2007). Polyhedron, 26, 2713–2718.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Butcher, R. J., Castineiras, A., Bermejo, E. & Bharatam, P. V. (2006). Inorg. Chem. 45, 1535–1542.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMujeebur Rahman, V. P., Sayeed, M., Ansari, W. H., Lemiere, G. (2005). Eur. J. Med. Chem. 40, 173-184.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds