organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(7-Methyl-3-oxo-1-phenyl­perhydro­naphthalen-4a-yl)malono­nitrile

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: kangtairan@yahoo.com.cn

(Received 6 November 2009; accepted 8 November 2009; online 11 November 2009)

In the title compound, C20H22N2O, both cyclo­hexane rings adopt chair conformations. Weak C—H⋯N and C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the use of malononitrile-containing compounds as building blocks in organic synthesis, see: Magdi et al. (2003[Magdi, E. A., Zaki, M., Fernanda, P. & Brian, L. B. (2003). J. Org. Chem. 68, 276-282.]); Michail & Sergey (2008[Michail, N. E. & Sergey, K. F. (2008). Tetrahedron, 64, 708-713.]); Zhang et al. (2008[Zhang, D.-J., Wang, G.-X. & Zhu, R.-X. (2008). Tetrahedron Asymmetry, 19, 568-576.]). For a related structure, see: Zhou et al. (2007[Zhou, J.-X., Wang, X.-S. & Shi, D.-Q. (2007). Acta Cryst. E63, o2082-o2083.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O

  • Mr = 306.40

  • Monoclinic, P 21

  • a = 11.575 (2) Å

  • b = 6.0907 (12) Å

  • c = 12.276 (3) Å

  • β = 101.38 (3)°

  • V = 848.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 113 K

  • 0.25 × 0.24 × 0.21 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: none

  • 7044 measured reflections

  • 2194 independent reflections

  • 1479 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.083

  • S = 1.04

  • 2194 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.95 2.54 3.451 (3) 162
C12—H12A⋯O1ii 0.99 2.35 3.159 (2) 138
C18—H18⋯N1iii 1.00 2.36 3.306 (3) 157
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure, Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Malononitrile derivatives are useful intermediates in organic synthesis (Michail et al. 2008; Zhang et al. 2008; Zhou et al. 2007). Their potential applications are used for the preparation of heterocyclic ring compounds (Magdi et al. 2003). As a part of our interest in the synthsis of some complex ring systems, we investigated the title compound, (I), which is a potential precursor in the preparation of multifunctional tricyclic compound. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. Two six membered rings (cyclohexanone and cyclohexane) adopt an chair conformation. The crystal packing is stabilized by C—H···N and C—H···0 hydrogen bonding (Table 1).

Related literature top

For the use of malononitrile-containing compounds as building blocks in organic synthesis, see: Magdi et al. (2003); Michail & Sergey (2008); Zhang et al. (2008). For a related structure, see: Zhou et al. (2007).

Experimental top

2-(4-methylcyclohexylidene)malononitrile (0.16 g, 1 mmol), (E)-4-phenylbut-3-en-2-one (0.175 g, 1.2 mmol), 9S-amino-9-deoxyepiquinine (0.065 g, 0.2 mmol), 2,2,2-trifluoroacetic acid (0.029 g, 0.4 mmol) and N-ethyl-N-isopropylpropan-2-amine (0.023 g, 0.15 mmol) were stirred in THF (3 ml) at 298 K for 110 h. Then the reaction was quenched by adding 1 mol/L HCl (5 ml). The mixture was extracted with ethyl acetate (20 ml), dried with anhydrous sodium sulfate. The solvent was removed under reduced pressure and flash chromatography on silica gel gave the pure compound as a white solid. Colorless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation the mixture solvents of ethyl acetate and petroleum ether.

Refinement top

The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.95–1.00 Å, and refined using a riding model, with Uiso(H) =1.5Ueq(C) for methyl H atom and 1.2Ueq(C) for the others. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
2-(7-Methyl-3-oxo-1-phenylperhydronaphthalen-4a-yl)malononitrile top
Crystal data top
C20H22N2OF(000) = 328
Mr = 306.40Dx = 1.199 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2724 reflections
a = 11.575 (2) Åθ = 3.4–27.9°
b = 6.0907 (12) ŵ = 0.07 mm1
c = 12.276 (3) ÅT = 113 K
β = 101.38 (3)°Block, colourless
V = 848.4 (3) Å30.25 × 0.24 × 0.21 mm
Z = 2
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1479 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.063
Confocal monochromatorθmax = 27.9°, θmin = 3.4°
Detector resolution: 7.31 pixels mm-1h = 1515
ω and ϕ scansk = 77
7044 measured reflectionsl = 1416
2194 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
2194 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C20H22N2OV = 848.4 (3) Å3
Mr = 306.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.575 (2) ŵ = 0.07 mm1
b = 6.0907 (12) ÅT = 113 K
c = 12.276 (3) Å0.25 × 0.24 × 0.21 mm
β = 101.38 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1479 reflections with I > 2σ(I)
7044 measured reflectionsRint = 0.063
2194 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.083H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2194 reflectionsΔρmin = 0.24 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59916 (14)0.6258 (3)0.05489 (13)0.0319 (4)
N10.3799 (2)0.3869 (4)0.41898 (18)0.0389 (6)
N20.40092 (18)0.1712 (4)0.21854 (19)0.0354 (6)
C10.61036 (19)0.2632 (4)0.27728 (18)0.0183 (5)
C20.71015 (19)0.1075 (4)0.25731 (17)0.0193 (5)
H20.67280.02670.21850.023*
C30.7857 (2)0.2188 (4)0.18092 (18)0.0204 (5)
H30.81980.35560.21940.025*
C40.8884 (2)0.0760 (4)0.16412 (18)0.0223 (6)
C51.0035 (2)0.1440 (4)0.20656 (19)0.0272 (6)
H51.01690.28120.24370.033*
C61.0987 (2)0.0139 (5)0.1952 (2)0.0330 (7)
H61.17660.06340.22390.040*
C71.0812 (2)0.1863 (5)0.1427 (2)0.0329 (7)
H71.14660.27650.13670.040*
C80.9677 (2)0.2551 (4)0.0988 (2)0.0330 (6)
H80.95500.39190.06120.040*
C90.8720 (2)0.1242 (4)0.10967 (19)0.0283 (6)
H90.79430.17290.07930.034*
C100.7070 (2)0.2892 (4)0.07005 (18)0.0261 (6)
H10A0.75550.36440.02340.031*
H10B0.67110.15780.02940.031*
C110.6119 (2)0.4407 (4)0.09118 (19)0.0239 (6)
C120.5360 (2)0.3476 (4)0.16652 (17)0.0220 (5)
H12A0.48840.22510.12810.026*
H12B0.48110.46250.18240.026*
C130.7868 (2)0.0355 (4)0.36900 (18)0.0207 (5)
H13A0.73860.05620.40940.025*
H13B0.85250.05630.35400.025*
C140.8377 (2)0.2275 (4)0.44301 (19)0.0233 (6)
H140.89210.31000.40390.028*
C150.7405 (2)0.3855 (4)0.46116 (18)0.0226 (5)
H15A0.77680.51700.50130.027*
H15B0.69120.31320.50800.027*
C160.6622 (2)0.4565 (4)0.35109 (18)0.0207 (5)
H16A0.70930.54880.30970.025*
H16B0.59690.54770.36730.025*
C170.9091 (2)0.1482 (5)0.55366 (19)0.0341 (7)
H17A0.85800.06400.59320.051*
H17B0.94140.27500.59870.051*
H17C0.97370.05460.54030.051*
C180.52557 (19)0.1314 (4)0.33947 (18)0.0213 (5)
H180.57550.05680.40480.026*
C190.4415 (2)0.2767 (4)0.38201 (19)0.0255 (6)
C200.4563 (2)0.0388 (4)0.2708 (2)0.0235 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0308 (10)0.0322 (11)0.0298 (9)0.0017 (9)0.0009 (8)0.0110 (9)
N10.0373 (14)0.0422 (15)0.0404 (13)0.0023 (12)0.0155 (11)0.0142 (12)
N20.0259 (12)0.0288 (14)0.0513 (14)0.0010 (11)0.0073 (11)0.0060 (12)
C10.0163 (12)0.0199 (13)0.0181 (11)0.0011 (10)0.0022 (9)0.0019 (10)
C20.0195 (12)0.0195 (13)0.0180 (11)0.0005 (11)0.0010 (9)0.0021 (11)
C30.0183 (12)0.0233 (14)0.0196 (11)0.0020 (11)0.0035 (10)0.0007 (11)
C40.0211 (13)0.0274 (16)0.0196 (12)0.0006 (12)0.0070 (10)0.0021 (11)
C50.0239 (13)0.0336 (15)0.0247 (12)0.0001 (13)0.0063 (10)0.0019 (12)
C60.0208 (14)0.0470 (19)0.0315 (14)0.0015 (13)0.0059 (11)0.0048 (13)
C70.0273 (15)0.0419 (19)0.0326 (14)0.0129 (14)0.0133 (12)0.0085 (13)
C80.0396 (17)0.0318 (15)0.0309 (14)0.0053 (14)0.0150 (13)0.0003 (13)
C90.0258 (14)0.0293 (15)0.0309 (14)0.0007 (12)0.0086 (11)0.0004 (12)
C100.0274 (14)0.0332 (15)0.0192 (12)0.0010 (12)0.0080 (10)0.0044 (11)
C110.0213 (13)0.0314 (16)0.0164 (11)0.0014 (12)0.0030 (10)0.0017 (11)
C120.0190 (12)0.0245 (14)0.0200 (12)0.0018 (12)0.0019 (10)0.0005 (11)
C130.0181 (12)0.0232 (14)0.0204 (12)0.0028 (11)0.0030 (10)0.0020 (10)
C140.0193 (12)0.0283 (14)0.0211 (12)0.0004 (11)0.0012 (10)0.0020 (11)
C150.0204 (13)0.0235 (14)0.0224 (12)0.0002 (11)0.0001 (10)0.0021 (11)
C160.0190 (12)0.0195 (13)0.0232 (12)0.0018 (11)0.0032 (10)0.0012 (11)
C170.0278 (14)0.0434 (17)0.0275 (13)0.0072 (14)0.0036 (11)0.0005 (13)
C180.0178 (11)0.0218 (12)0.0239 (12)0.0023 (11)0.0031 (10)0.0000 (11)
C190.0228 (13)0.0311 (15)0.0237 (12)0.0063 (13)0.0070 (11)0.0056 (12)
C200.0192 (13)0.0230 (14)0.0295 (14)0.0035 (12)0.0081 (11)0.0008 (12)
Geometric parameters (Å, º) top
O1—C111.211 (3)C10—C111.498 (3)
N1—C191.137 (3)C10—H10A0.9900
N2—C201.145 (3)C10—H10B0.9900
C1—C161.534 (3)C11—C121.506 (3)
C1—C121.547 (3)C12—H12A0.9900
C1—C21.551 (3)C12—H12B0.9900
C1—C181.577 (3)C13—C141.526 (3)
C2—C131.543 (3)C13—H13A0.9900
C2—C31.558 (3)C13—H13B0.9900
C2—H21.0000C14—C171.522 (3)
C3—C41.520 (3)C14—C151.530 (3)
C3—C101.542 (3)C14—H141.0000
C3—H31.0000C15—C161.533 (3)
C4—C91.386 (3)C15—H15A0.9900
C4—C51.395 (3)C15—H15B0.9900
C5—C61.386 (3)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
C6—C71.375 (4)C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C7—C81.384 (4)C17—H17C0.9800
C7—H70.9500C18—C201.470 (3)
C8—C91.392 (3)C18—C191.484 (3)
C8—H80.9500C18—H181.0000
C9—H90.9500
C16—C1—C12110.45 (19)C11—C12—C1111.99 (18)
C16—C1—C2110.22 (18)C11—C12—H12A109.2
C12—C1—C2111.52 (17)C1—C12—H12A109.2
C16—C1—C18108.26 (17)C11—C12—H12B109.2
C12—C1—C18107.66 (17)C1—C12—H12B109.2
C2—C1—C18108.61 (18)H12A—C12—H12B107.9
C13—C2—C1110.43 (16)C14—C13—C2113.48 (19)
C13—C2—C3111.48 (18)C14—C13—H13A108.9
C1—C2—C3110.66 (18)C2—C13—H13A108.9
C13—C2—H2108.1C14—C13—H13B108.9
C1—C2—H2108.1C2—C13—H13B108.9
C3—C2—H2108.1H13A—C13—H13B107.7
C4—C3—C10112.40 (17)C17—C14—C13111.5 (2)
C4—C3—C2112.31 (18)C17—C14—C15110.78 (19)
C10—C3—C2110.42 (18)C13—C14—C15111.13 (19)
C4—C3—H3107.1C17—C14—H14107.8
C10—C3—H3107.1C13—C14—H14107.8
C2—C3—H3107.1C15—C14—H14107.8
C9—C4—C5118.1 (2)C14—C15—C16111.88 (18)
C9—C4—C3122.2 (2)C14—C15—H15A109.2
C5—C4—C3119.7 (2)C16—C15—H15A109.2
C6—C5—C4120.8 (2)C14—C15—H15B109.2
C6—C5—H5119.6C16—C15—H15B109.2
C4—C5—H5119.6H15A—C15—H15B107.9
C7—C6—C5120.5 (2)C15—C16—C1113.49 (18)
C7—C6—H6119.7C15—C16—H16A108.9
C5—C6—H6119.7C1—C16—H16A108.9
C6—C7—C8119.4 (2)C15—C16—H16B108.9
C6—C7—H7120.3C1—C16—H16B108.9
C8—C7—H7120.3H16A—C16—H16B107.7
C7—C8—C9120.1 (3)C14—C17—H17A109.5
C7—C8—H8119.9C14—C17—H17B109.5
C9—C8—H8119.9H17A—C17—H17B109.5
C4—C9—C8120.9 (2)C14—C17—H17C109.5
C4—C9—H9119.5H17A—C17—H17C109.5
C8—C9—H9119.5H17B—C17—H17C109.5
C11—C10—C3110.17 (18)C20—C18—C19107.53 (19)
C11—C10—H10A109.6C20—C18—C1113.71 (18)
C3—C10—H10A109.6C19—C18—C1112.4 (2)
C11—C10—H10B109.6C20—C18—H18107.7
C3—C10—H10B109.6C19—C18—H18107.7
H10A—C10—H10B108.1C1—C18—H18107.7
O1—C11—C10123.4 (2)N1—C19—C18177.1 (3)
O1—C11—C12122.2 (2)N2—C20—C18178.7 (2)
C10—C11—C12114.3 (2)
C16—C1—C2—C1354.0 (2)C3—C10—C11—O1120.9 (2)
C12—C1—C2—C13177.03 (19)C3—C10—C11—C1256.3 (3)
C18—C1—C2—C1364.5 (2)O1—C11—C12—C1124.1 (2)
C16—C1—C2—C369.9 (2)C10—C11—C12—C153.1 (3)
C12—C1—C2—C353.1 (2)C16—C1—C12—C1172.3 (2)
C18—C1—C2—C3171.61 (17)C2—C1—C12—C1150.7 (3)
C13—C2—C3—C453.7 (2)C18—C1—C12—C11169.7 (2)
C1—C2—C3—C4177.04 (18)C1—C2—C13—C1455.3 (2)
C13—C2—C3—C10179.95 (19)C3—C2—C13—C1468.2 (2)
C1—C2—C3—C1056.6 (2)C2—C13—C14—C17178.06 (19)
C10—C3—C4—C960.6 (3)C2—C13—C14—C1553.9 (2)
C2—C3—C4—C964.7 (3)C17—C14—C15—C16176.4 (2)
C10—C3—C4—C5120.9 (2)C13—C14—C15—C1651.9 (3)
C2—C3—C4—C5113.8 (2)C14—C15—C16—C153.7 (3)
C9—C4—C5—C60.5 (3)C12—C1—C16—C15178.17 (18)
C3—C4—C5—C6178.1 (2)C2—C1—C16—C1554.5 (2)
C4—C5—C6—C70.7 (4)C18—C1—C16—C1564.2 (2)
C5—C6—C7—C81.5 (4)C16—C1—C18—C20171.35 (19)
C6—C7—C8—C91.2 (4)C12—C1—C18—C2051.9 (2)
C5—C4—C9—C80.8 (3)C2—C1—C18—C2069.0 (2)
C3—C4—C9—C8177.8 (2)C16—C1—C18—C1948.9 (2)
C7—C8—C9—C40.1 (4)C12—C1—C18—C1970.5 (2)
C4—C3—C10—C11176.4 (2)C2—C1—C18—C19168.59 (18)
C2—C3—C10—C1157.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.543.451 (3)162
C12—H12A···O1ii0.992.353.159 (2)138
C18—H18···N1iii1.002.363.306 (3)157
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z; (iii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H22N2O
Mr306.40
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)11.575 (2), 6.0907 (12), 12.276 (3)
β (°) 101.38 (3)
V3)848.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.24 × 0.21
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7044, 2194, 1479
Rint0.063
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.083, 1.04
No. of reflections2194
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.543.451 (3)161.7
C12—H12A···O1ii0.992.353.159 (2)138.0
C18—H18···N1iii1.002.363.306 (3)157.0
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z; (iii) x+1, y1/2, z+1.
 

Acknowledgements

The diffraction data were collected at the Centre for Testing and Analysis, Sichuan University. We acknowledge financial support from China West Normal University (No 412374).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMagdi, E. A., Zaki, M., Fernanda, P. & Brian, L. B. (2003). J. Org. Chem. 68, 276–282.  Web of Science PubMed Google Scholar
First citationMichail, N. E. & Sergey, K. F. (2008). Tetrahedron, 64, 708–713.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure, Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D.-J., Wang, G.-X. & Zhu, R.-X. (2008). Tetrahedron Asymmetry, 19, 568–576.  Web of Science CrossRef CAS Google Scholar
First citationZhou, J.-X., Wang, X.-S. & Shi, D.-Q. (2007). Acta Cryst. E63, o2082–o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds