metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­[3-(4-pyrid­yl)benzoato-κN]nickel(II)

aSchool of Chemistry & Chemical Engineering, Guangxi Normal University, 541004 Guilin 541004, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 November 2009; accepted 27 November 2009; online 28 November 2009)

The NiII atom in the title compound, [Ni(C12H8NO2)2(H2O)4], exists in an all-trans octa­hedral coordination environment. The 3-(4-pyrid­yl)benzoate ligand binds to Ni atom through the pyridyl N atom; the pyridine and benzene rings are oriented at a dihedral angle of 26.27 (10)°. Adjacent complexes are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network. The metal atom lies on a special position of 2 site symmetry in the crystal structure.

Related literature

The 3-(pyridin-4-yl)benzoate unit is fairly rigid like the nicotinate unit, which also forms a similar zwitterionic nickel derivative; see: Batten & Harris (2001[ Batten, S. R. & Harris, A. R. (2001). Acta Cryst. E57, m9-m11.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8NO2)2(H2O)4]

  • Mr = 527.16

  • Monoclinic, C 2/c

  • a = 24.564 (3) Å

  • b = 7.0520 (8) Å

  • c = 13.781 (2) Å

  • β = 113.325 (2)°

  • V = 2192.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 173 K

  • 0.47 × 0.31 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[ Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.666, Tmax = 0.929

  • 5587 measured reflections

  • 2360 independent reflections

  • 1977 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.09

  • 2360 reflections

  • 175 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1W 2.0627 (14)
Ni1—O2W 2.0811 (14)
Ni1—N1 2.0931 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O1i 0.84 (1) 1.88 (1) 2.682 (2) 160 (3)
O1w—H12⋯O2ii 0.83 (1) 1.91 (1) 2.734 (2) 170 (2)
O2w—H21⋯O1iii 0.84 (1) 1.93 (1) 2.732 (2) 159 (2)
O2w—H22⋯O2iv 0.83 (1) 1.88 (1) 2.711 (2) 177 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[ Bruker (2004). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[ Bruker (2004). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[ Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[ Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The 3-(pyridin-4-yl)benzoate unit is fairly rigid like the nicotinate unit, which also forms a similar zwitterionic nickel derivative; see: Batten & Harris (2001).

Experimental top

3-(Pyridin-4-yl)benzoic acid was purchased from a chemical supplier. The reagent (0.199 g, 1 mmol) and sodium hydroxide (0.040 g, 1 mmol) were mixed with nickel(II) nitrate hexahydrate (0.150 g, 0.5 mmol) in water (10 ml). The mixture was placed in a 15 ml Teflon-lined autoclave and heated at 423 K for 48 h. The autoclave was cooled over 12 h at a rate of 5 K an hour. Green crystals were isolated by hand (yield ca 60% based on Ni).

Refinement top

Carbon-bound hydrogen atoms were generated geometrically and were constrained to ride on their parent atoms [C–H = 0.95 Å; Uiso(H) =1.2Ueq(C)]. The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ni(H2O)4(C12H2NO2)2 at the 70% probability level; hydrogen atoms are drawn as sphere of arbitrary radius.
Tetraaquabis[3-(4-pyridyl)benzoato-κN]nickel(II) top
Crystal data top
[Ni(C12H8NO2)2(H2O)4]F(000) = 1096
Mr = 527.16Dx = 1.597 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 996 reflections
a = 24.564 (3) Åθ = 3.0–26.9°
b = 7.0520 (8) ŵ = 0.94 mm1
c = 13.781 (2) ÅT = 173 K
β = 113.325 (2)°Prism, green
V = 2192.1 (4) Å30.47 × 0.31 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2360 independent reflections
Radiation source: fine-focus sealed tube1977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1031
Tmin = 0.666, Tmax = 0.929k = 88
5587 measured reflectionsl = 1710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.5684P]
where P = (Fo2 + 2Fc2)/3
2360 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.38 e Å3
4 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ni(C12H8NO2)2(H2O)4]V = 2192.1 (4) Å3
Mr = 527.16Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.564 (3) ŵ = 0.94 mm1
b = 7.0520 (8) ÅT = 173 K
c = 13.781 (2) Å0.47 × 0.31 × 0.08 mm
β = 113.325 (2)°
Data collection top
Bruker APEXII
diffractometer
2360 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1977 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.929Rint = 0.023
5587 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0314 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.38 e Å3
2360 reflectionsΔρmin = 0.27 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.30069 (5)0.75000.01561 (13)
N10.58142 (7)0.3092 (2)0.73473 (13)0.0179 (3)
O10.90563 (6)0.2232 (2)0.96391 (12)0.0266 (3)
O20.96160 (6)0.29413 (19)0.87580 (12)0.0242 (3)
O1W0.46891 (6)0.0848 (2)0.64084 (11)0.0199 (3)
O2W0.53247 (6)0.5047 (2)0.86819 (11)0.0208 (3)
C10.91223 (9)0.2740 (3)0.88189 (16)0.0197 (4)
C20.85662 (8)0.3156 (3)0.78537 (16)0.0172 (4)
C30.85969 (8)0.3652 (3)0.69003 (17)0.0208 (4)
H30.89700.37320.68450.025*
C40.80768 (8)0.4029 (3)0.60302 (16)0.0220 (4)
H40.80960.43660.53770.026*
C50.75295 (8)0.3919 (3)0.61016 (15)0.0205 (4)
H50.71780.41880.55000.025*
C60.74932 (8)0.3414 (3)0.70535 (15)0.0176 (4)
C70.80178 (8)0.3043 (3)0.79252 (16)0.0173 (4)
H70.80000.27060.85800.021*
C80.69121 (8)0.3288 (3)0.71474 (16)0.0173 (4)
C90.68658 (8)0.3575 (3)0.81138 (16)0.0198 (4)
H90.72100.38560.87270.024*
C100.63215 (9)0.3452 (3)0.81801 (16)0.0205 (4)
H100.63050.36320.88510.025*
C110.58576 (9)0.2824 (3)0.64134 (16)0.0199 (4)
H11A0.55050.25660.58110.024*
C120.63867 (8)0.2903 (3)0.62852 (16)0.0198 (4)
H12A0.63920.26940.56080.024*
H110.4524 (11)0.124 (4)0.5786 (11)0.048 (9)*
H120.4935 (8)0.004 (3)0.6396 (17)0.023 (6)*
H210.5473 (10)0.452 (3)0.9275 (11)0.030 (7)*
H220.5096 (10)0.591 (3)0.869 (2)0.043 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01032 (18)0.0186 (2)0.0183 (2)0.0000.00608 (14)0.000
N10.0125 (7)0.0184 (8)0.0222 (9)0.0001 (6)0.0061 (7)0.0022 (7)
O10.0189 (7)0.0361 (9)0.0215 (8)0.0012 (6)0.0043 (6)0.0023 (6)
O20.0118 (7)0.0227 (8)0.0362 (9)0.0008 (5)0.0077 (6)0.0012 (6)
O1W0.0155 (7)0.0222 (8)0.0216 (8)0.0010 (6)0.0071 (6)0.0019 (6)
O2W0.0156 (7)0.0225 (8)0.0226 (8)0.0028 (6)0.0056 (6)0.0022 (6)
C10.0154 (9)0.0154 (9)0.0259 (11)0.0002 (7)0.0056 (8)0.0042 (8)
C20.0149 (9)0.0145 (9)0.0214 (10)0.0026 (7)0.0064 (8)0.0045 (8)
C30.0149 (9)0.0215 (10)0.0294 (11)0.0027 (8)0.0122 (8)0.0026 (8)
C40.0212 (10)0.0277 (11)0.0202 (10)0.0032 (8)0.0115 (8)0.0003 (9)
C50.0158 (9)0.0234 (10)0.0206 (10)0.0007 (8)0.0054 (8)0.0002 (8)
C60.0135 (9)0.0176 (9)0.0223 (10)0.0020 (7)0.0078 (8)0.0033 (7)
C70.0156 (9)0.0179 (9)0.0187 (9)0.0002 (7)0.0071 (8)0.0002 (8)
C80.0149 (9)0.0163 (9)0.0205 (10)0.0014 (7)0.0069 (8)0.0024 (7)
C90.0130 (9)0.0242 (10)0.0204 (10)0.0011 (8)0.0047 (8)0.0004 (8)
C100.0175 (9)0.0255 (10)0.0198 (10)0.0014 (8)0.0090 (8)0.0003 (8)
C110.0139 (9)0.0237 (10)0.0210 (10)0.0004 (8)0.0057 (8)0.0008 (8)
C120.0167 (10)0.0230 (10)0.0196 (10)0.0007 (8)0.0071 (8)0.0007 (8)
Geometric parameters (Å, º) top
Ni1—O1W2.0627 (14)C3—C41.388 (3)
Ni1—O1Wi2.0627 (14)C3—H30.9500
Ni1—O2W2.0811 (14)C4—C51.389 (3)
Ni1—O2Wi2.0811 (14)C4—H40.9500
Ni1—N1i2.0931 (16)C5—C61.396 (3)
Ni1—N12.0931 (16)C5—H50.9500
N1—C101.342 (3)C6—C71.395 (3)
N1—C111.346 (2)C6—C81.486 (3)
O1—C11.256 (3)C7—H70.9500
O2—C11.256 (2)C8—C121.392 (3)
O1W—H110.838 (10)C8—C91.396 (3)
O1W—H120.834 (10)C9—C101.378 (3)
O2W—H210.840 (10)C9—H90.9500
O2W—H220.833 (10)C10—H100.9500
C1—C21.511 (3)C11—C121.380 (3)
C2—C31.390 (3)C11—H11A0.9500
C2—C71.391 (3)C12—H12A0.9500
O1W—Ni1—O1Wi84.85 (8)C4—C3—C2119.26 (17)
O1W—Ni1—O2W176.09 (6)C4—C3—H3120.4
O1Wi—Ni1—O2W91.32 (6)C2—C3—H3120.4
O1W—Ni1—O2Wi91.32 (6)C3—C4—C5120.92 (18)
O1Wi—Ni1—O2Wi176.09 (6)C3—C4—H4119.5
O2W—Ni1—O2Wi92.51 (8)C5—C4—H4119.5
O1W—Ni1—N1i90.11 (6)C4—C5—C6120.31 (18)
O1Wi—Ni1—N1i92.32 (6)C4—C5—H5119.8
O2W—Ni1—N1i89.24 (6)C6—C5—H5119.8
O2Wi—Ni1—N1i88.48 (6)C7—C6—C5118.45 (17)
O1W—Ni1—N192.32 (6)C7—C6—C8120.35 (17)
O1Wi—Ni1—N190.11 (6)C5—C6—C8121.19 (17)
O2W—Ni1—N188.48 (6)C2—C7—C6121.21 (18)
O2Wi—Ni1—N189.24 (6)C2—C7—H7119.4
N1i—Ni1—N1176.71 (9)C6—C7—H7119.4
C10—N1—C11116.48 (16)C12—C8—C9116.40 (17)
C10—N1—Ni1121.33 (13)C12—C8—C6122.37 (18)
C11—N1—Ni1122.18 (13)C9—C8—C6121.23 (17)
Ni1—O1W—H11113 (2)C10—C9—C8120.12 (18)
Ni1—O1W—H12117.0 (16)C10—C9—H9119.9
H11—O1W—H12105 (2)C8—C9—H9119.9
Ni1—O2W—H21109.7 (18)N1—C10—C9123.49 (18)
Ni1—O2W—H22117.8 (19)N1—C10—H10118.3
H21—O2W—H22110 (2)C9—C10—H10118.3
O1—C1—O2124.36 (19)N1—C11—C12123.49 (19)
O1—C1—C2116.99 (17)N1—C11—H11A118.3
O2—C1—C2118.65 (18)C12—C11—H11A118.3
C3—C2—C7119.85 (18)C11—C12—C8120.03 (19)
C3—C2—C1120.82 (17)C11—C12—H12A120.0
C7—C2—C1119.32 (18)C8—C12—H12A120.0
O1W—Ni1—N1—C10144.22 (15)C3—C2—C7—C60.1 (3)
O1Wi—Ni1—N1—C1059.36 (15)C1—C2—C7—C6179.93 (17)
O2W—Ni1—N1—C1031.96 (15)C5—C6—C7—C20.4 (3)
O2Wi—Ni1—N1—C10124.49 (15)C8—C6—C7—C2179.88 (17)
O1W—Ni1—N1—C1136.93 (15)C7—C6—C8—C12154.18 (19)
O1Wi—Ni1—N1—C11121.79 (15)C5—C6—C8—C1226.4 (3)
O2W—Ni1—N1—C11146.89 (15)C7—C6—C8—C926.6 (3)
O2Wi—Ni1—N1—C1154.36 (15)C5—C6—C8—C9152.89 (19)
O1—C1—C2—C3177.38 (18)C12—C8—C9—C100.6 (3)
O2—C1—C2—C33.5 (3)C6—C8—C9—C10179.95 (18)
O1—C1—C2—C72.7 (3)C11—N1—C10—C90.8 (3)
O2—C1—C2—C7176.42 (17)Ni1—N1—C10—C9178.14 (15)
C7—C2—C3—C40.0 (3)C8—C9—C10—N11.1 (3)
C1—C2—C3—C4179.89 (18)C10—N1—C11—C120.0 (3)
C2—C3—C4—C50.1 (3)Ni1—N1—C11—C12178.89 (14)
C3—C4—C5—C60.4 (3)N1—C11—C12—C80.4 (3)
C4—C5—C6—C70.5 (3)C9—C8—C12—C110.1 (3)
C4—C5—C6—C8179.99 (18)C6—C8—C12—C11179.22 (18)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O1ii0.84 (1)1.88 (1)2.682 (2)160 (3)
O1w—H12···O2iii0.83 (1)1.91 (1)2.734 (2)170 (2)
O2w—H21···O1iv0.84 (1)1.93 (1)2.732 (2)159 (2)
O2w—H22···O2v0.83 (1)1.88 (1)2.711 (2)177 (3)
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+3/2, y+1/2, z+2; (v) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ni(C12H8NO2)2(H2O)4]
Mr527.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)24.564 (3), 7.0520 (8), 13.781 (2)
β (°) 113.325 (2)
V3)2192.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.47 × 0.31 × 0.08
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.666, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
5587, 2360, 1977
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.09
No. of reflections2360
No. of parameters175
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Ni1—O1W2.0627 (14)Ni1—N12.0931 (16)
Ni1—O2W2.0811 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O1i0.84 (1)1.88 (1)2.682 (2)160 (3)
O1w—H12···O2ii0.83 (1)1.91 (1)2.734 (2)170 (2)
O2w—H21···O1iii0.84 (1)1.93 (1)2.732 (2)159 (2)
O2w—H22···O2iv0.83 (1)1.88 (1)2.711 (2)177 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+3/2, y+1/2, z+2; (iv) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Guangxi Graduate Education Innovation Program (2009106020703M44) and the University of Malaya.

References

First citation Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citation Batten, S. R. & Harris, A. R. (2001). Acta Cryst. E57, m9–m11.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Bruker (2004). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citation Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Westrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds