organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-nitro­benzoate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: haijiaoyiya@sina.com

(Received 4 November 2009; accepted 10 November 2009; online 14 November 2009)

In the mol­ecule of the title compound, C8H7NO4, the nitro group is approximately coplanar with the benzene ring [dihedral angle = 0.6 (1)°], while the dihedral angle between the methoxy­carbonyl group and the benzene ring is 8.8 (1)°. In the crystal structure, weak inter­molecular aromatic C—H⋯Ocarbox­yl and C—H⋯Onitro hydrogen-bonding inter­actions are present.

Related literature

For related literature on benzoates, see: Zhang (1992[Zhang, S. G. (1992). Technical Book of Fine Chemicals. Beijing: Science Publishing.]); Zhang et al. (1990[Zhang, Z. S., Wu, J. G. & Deng, R. W. (1990). J. Lanzhou Univ. (Nat. Sci. Ed.), 26, 69-75.]); Zhang et al. (1995[Zhang, A. Y., Qian, B., Min, J. & Fang, Q. X. (1995). J. Shanxi Normal Univ. (Nat. Sci. Ed.), 23, 44-47.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7NO4

  • Mr = 181.15

  • Monoclinic, P 21 /c

  • a = 7.109 (3) Å

  • b = 17.092 (6) Å

  • c = 7.193 (3) Å

  • β = 116.292 (4)°

  • V = 783.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 93 K

  • 0.43 × 0.40 × 0.10 mm

Data collection
  • Rigaku SPIDER CCD-detector diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.948, Tmax = 0.988

  • 6176 measured reflections

  • 1787 independent reflections

  • 1445 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.080

  • S = 1.00

  • 1787 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.59 3.384 (2) 141
C5—H5⋯O4ii 0.95 2.58 3.378 (2) 142
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzoates are important intermediates in the chemistry of pigments and pharmaceuticals, which are used worldwide (Zhang, 1992; Zhang et al., 1990; Zhang et al., 1995). We report here the crystal structure of methyl 4-nitrobenzoate, C8H7NO4 (I). In the structure of the title compound (Fig. 1) the bond lengths and angles are within expected ranges. The nitro substituent group is nearly coplanar with the benzene ring [dihedral angle, 0.6 (1)°], while the methoxycarbonyl group forms a dihedral angle of 8.8 (1)° with the benzene ring. In the crystal structure, adjacent molecules are linked by weak intermolecular aromatic C—H···Ocarboxyl and Onitro hydrogen bonds (Table 1).

Related literature top

For related literature on benzoates, see: Zhang (1992); Zhang et al. (1990); Zhang et al. (1995).

Experimental top

4-Nitrobenzoic acid (5.0 g, 30 mmol) was dissolved in hot methanol (10 ml), then six drops of concentrated sulfuric acid were added. The mixture was stirred at 353 K for 4 h, poured into ice water and stirred for 3 min. After filtering, washing with water and drying in vacuum, a white powder was then obtained (yield: 73%). The crude product was purified by recrystallization from methanol (yield: 51%). Colourless plate-shaped crystals [m.p. 369 (2) K] were obtained after several days, by slow evaporation of a 1:1 (v/v) methanol-water solution. .

Refinement top

Positional parameters of all H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Caryl—H = 0.95 Å, and Cmethyl—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Atom numbering scheme for the title compound (I) with the displacement ellipsoids drawn at the 30% probability level.
Methyl 4-nitrobenzoate top
Crystal data top
C8H7NO4F(000) = 376
Mr = 181.15Dx = 1.536 Mg m3
Monoclinic, P21/cMelting point: 369(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.109 (3) ÅCell parameters from 2257 reflections
b = 17.092 (6) Åθ = 3.2–27.4°
c = 7.193 (3) ŵ = 0.13 mm1
β = 116.292 (4)°T = 93 K
V = 783.6 (5) Å3Plate, colorless
Z = 40.43 × 0.40 × 0.10 mm
Data collection top
Rigaku SPIDER CCD-detector
diffractometer
1787 independent reflections
Radiation source: rotating anode1445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: ψ scan
(North et al., 1968)
h = 99
Tmin = 0.948, Tmax = 0.988k = 2022
6176 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.336P]
where P = (Fo2 + 2Fc2)/3
1787 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C8H7NO4V = 783.6 (5) Å3
Mr = 181.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.109 (3) ŵ = 0.13 mm1
b = 17.092 (6) ÅT = 93 K
c = 7.193 (3) Å0.43 × 0.40 × 0.10 mm
β = 116.292 (4)°
Data collection top
Rigaku SPIDER CCD-detector
diffractometer
1787 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1445 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.988Rint = 0.023
6176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
1787 reflectionsΔρmin = 0.18 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35100 (15)0.66883 (5)0.67509 (14)0.0205 (2)
O20.30933 (15)0.59510 (5)0.91414 (14)0.0216 (2)
O30.14128 (16)0.28185 (5)0.23700 (16)0.0265 (2)
O40.14076 (17)0.36321 (6)0.00524 (15)0.0275 (2)
N10.15702 (17)0.34819 (6)0.17881 (17)0.0185 (2)
C10.25319 (19)0.54972 (7)0.39808 (19)0.0155 (3)
H10.26380.60160.35630.019*
C20.21513 (19)0.48826 (7)0.2601 (2)0.0160 (3)
H20.20070.49710.12400.019*
C30.19872 (19)0.41347 (7)0.3264 (2)0.0155 (3)
C40.21927 (19)0.39748 (7)0.5240 (2)0.0167 (3)
H40.20650.34560.56430.020*
C50.25907 (19)0.45958 (7)0.6606 (2)0.0160 (3)
H50.27490.45030.79700.019*
C60.27592 (18)0.53560 (7)0.59852 (19)0.0149 (3)
C70.31372 (19)0.60132 (7)0.7484 (2)0.0162 (3)
C80.3760 (2)0.73724 (8)0.8036 (2)0.0239 (3)
H8A0.25320.74250.83100.029*
H8B0.38900.78400.73130.029*
H8C0.50250.73140.93510.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (5)0.0155 (5)0.0190 (5)0.0039 (4)0.0139 (4)0.0029 (4)
O20.0259 (5)0.0241 (5)0.0167 (5)0.0026 (4)0.0111 (4)0.0005 (4)
O30.0390 (6)0.0150 (5)0.0290 (6)0.0025 (4)0.0182 (5)0.0006 (4)
O40.0437 (6)0.0225 (5)0.0202 (5)0.0009 (5)0.0177 (5)0.0016 (4)
N10.0196 (5)0.0163 (5)0.0211 (6)0.0005 (4)0.0102 (5)0.0002 (4)
C10.0151 (6)0.0144 (6)0.0172 (7)0.0002 (5)0.0075 (5)0.0022 (5)
C20.0152 (6)0.0189 (6)0.0142 (6)0.0007 (5)0.0067 (5)0.0024 (5)
C30.0132 (6)0.0160 (6)0.0172 (6)0.0011 (5)0.0066 (5)0.0008 (5)
C40.0152 (6)0.0153 (6)0.0204 (7)0.0008 (5)0.0088 (5)0.0033 (5)
C50.0143 (6)0.0196 (6)0.0150 (6)0.0012 (5)0.0071 (5)0.0036 (5)
C60.0115 (5)0.0175 (6)0.0152 (6)0.0003 (5)0.0055 (5)0.0002 (5)
C70.0134 (6)0.0181 (6)0.0162 (6)0.0005 (5)0.0059 (5)0.0017 (5)
C80.0339 (8)0.0176 (6)0.0243 (7)0.0055 (6)0.0167 (6)0.0060 (5)
Geometric parameters (Å, º) top
O1—C71.3429 (15)C2—H20.9500
O1—C81.4517 (15)C3—C41.3901 (18)
O2—C71.2111 (16)C4—C51.3880 (18)
O3—N11.2308 (14)C4—H40.9500
O4—N11.2290 (15)C5—C61.3962 (18)
N1—C31.4770 (16)C5—H50.9500
C1—C21.3872 (18)C6—C71.4965 (18)
C1—C61.3988 (18)C8—H8A0.9800
C1—H10.9500C8—H8B0.9800
C2—C31.3873 (17)C8—H8C0.9800
C7—O1—C8115.59 (10)C4—C5—C6120.30 (12)
O4—N1—O3123.79 (11)C4—C5—H5119.8
O4—N1—C3118.11 (10)C6—C5—H5119.8
O3—N1—C3118.10 (11)C5—C6—C1120.22 (12)
C2—C1—C6120.25 (12)C5—C6—C7118.78 (11)
C2—C1—H1119.9C1—C6—C7120.98 (11)
C6—C1—H1119.9O2—C7—O1123.89 (12)
C1—C2—C3118.10 (12)O2—C7—C6124.65 (11)
C1—C2—H2121.0O1—C7—C6111.46 (11)
C3—C2—H2121.0O1—C8—H8A109.5
C2—C3—C4123.11 (12)O1—C8—H8B109.5
C2—C3—N1118.00 (11)H8A—C8—H8B109.5
C4—C3—N1118.89 (11)O1—C8—H8C109.5
C5—C4—C3118.01 (12)H8A—C8—H8C109.5
C5—C4—H4121.0H8B—C8—H8C109.5
C3—C4—H4121.0
C6—C1—C2—C30.59 (18)C4—C5—C6—C10.12 (18)
C1—C2—C3—C40.22 (18)C4—C5—C6—C7178.53 (11)
C1—C2—C3—N1179.66 (11)C2—C1—C6—C50.43 (18)
O4—N1—C3—C20.62 (17)C2—C1—C6—C7179.05 (11)
O3—N1—C3—C2179.62 (11)C8—O1—C7—O23.17 (18)
O4—N1—C3—C4179.49 (12)C8—O1—C7—C6176.11 (10)
O3—N1—C3—C40.27 (17)C5—C6—C7—O28.15 (19)
C2—C3—C4—C50.31 (18)C1—C6—C7—O2170.48 (12)
N1—C3—C4—C5179.80 (11)C5—C6—C7—O1172.58 (11)
C3—C4—C5—C60.48 (18)C1—C6—C7—O18.78 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.952.392.7149 (19)100
C2—H2···O2i0.952.593.384 (2)141
C5—H5···O4ii0.952.583.378 (2)142
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H7NO4
Mr181.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)7.109 (3), 17.092 (6), 7.193 (3)
β (°) 116.292 (4)
V3)783.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.43 × 0.40 × 0.10
Data collection
DiffractometerRigaku SPIDER CCD-detector
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.948, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6176, 1787, 1445
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.080, 1.00
No. of reflections1787
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.59003.384 (2)141
C5—H5···O4ii0.952.58003.378 (2)142
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

References

First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. G. (1992). Technical Book of Fine Chemicals. Beijing: Science Publishing.  Google Scholar
First citationZhang, A. Y., Qian, B., Min, J. & Fang, Q. X. (1995). J. Shanxi Normal Univ. (Nat. Sci. Ed.), 23, 44–47.  CAS Google Scholar
First citationZhang, Z. S., Wu, J. G. & Deng, R. W. (1990). J. Lanzhou Univ. (Nat. Sci. Ed.), 26, 69–75.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds