supplementary materials


Acta Cryst. (2010). E66, o173    [ doi:10.1107/S1600536809052945 ]

7-Bromo-1-(4-chlorophenylsulfanyl)-2-phenylnaphtho[2,1-b]furan

H. D. Choi, P. J. Seo, B. K. Kim, B. W. Son and U. Lee

Abstract top

In the title compound, C24H14BrClOS, the S-bound 4-chlorophenyl ring is nearly perpendicular to the plane of the naphthofuran fragment [dihedral angle = 83.34 (3)°] and the phenyl ring in the 2-position is rotated out of the naphthofuran plane by a dihedral angle of 15.23 (5)°. The crystal structure is stabilized by aromatic [pi]-[pi] interactions between the furan and the central benzene rings of the neighbouring naphthofuran fragments, and between the outer benzene rings of the neighbouring naphthofuran fragments; the centroid-centroid distances within the stack are 3.879 (2) and 3.857 (2) Å. In addition, intermolecular C-Cl...[pi] interactions [3.505 (2) Å] between the Cl atom and the 2-phenyl ring are present.

Comment top

Molecules bearing naphthofuran skeleton have attracted considerable interest in view of their biological activity (Hagiwara et al., 1999; Hranjec et al., 2003; Mahadevan & Vaidya, 2003). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 7-bromo-2-phenylnaphtho[2,1-b]furan analogues (Choi et al., 2009a, b), we report the crystal structure of the title compound (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the thirteen constituent atoms. In the crystal structure, the dihedral angle formed by the plane of the naphthofuran fragment and the 2-phenyl ring (C13–C18) is 15.23 (5)°, and the S-bound 4-chlorophenyl ring makes a diheral angle of 83.34 (3)° with the plane of the naphthofuran fragment. The crystal packing (Fig. 2) is stabilized by two different aromatic ππ interactions within each stack molecules; the first between the furan ring (Cg1) and the central benzene ring (Cg2i, (i): - x + 1, - y + 1, - z + 1) of the neighbouring naphthofuran units [distance; 3.879 (2) Å], and the second between the outer benzene ring (Cg3) and the outer benzene ring (Cg3ii, (ii): - x + 1, - y, - z + 1) of the neighbouring naphthofuran units [distance; 3.857 (2)Å] (Cg1, Cg2 and Cg3 are the centroides of the C1/C2/C11/O/C12 furan ring, the C2/C3/C8/C9/C10/C11 benzene ring and the C3–C8 benzene ring, respectively). The molecular packing (Fig. 2) is further stabilized by intermolecular C—Cl···π interactions between the chlorine and the phenyl ring (Cg4), with a C22—Cl···Cg4iii [3.505 (2) Å] (Cg4 is the centroid of the C13–C18 benzene ring, (iii): - x + 1, - y, - z).

Related literature top

For the crystal structures of similar 7-bromo-2-phenylnaphtho[2,1-b]furan derivatives, see: Choi et al. (2009a,b). For the biological activity of naphthofuran compounds, see: Hagiwara et al. (1999); Hranjec et al. (2003); Mahadevan & Vaidya (2003).

Experimental top

Zinc chloride (273 mg, 2.0 mmol) was added to a stirred solution of 6-bromonaphthol (446 mg, 2.0 mmol) and 2-chloro-2-(4-chlorophenylsulfanyl)acetophenone (594 mg, 2.0 mmol) in dichloromethane (40 ml) at room temperature, and stirring was continued at the same temperature for 40 min. The reaction was quenched by the addition of water and the organic layer separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (carbon tetrachloride) to afford the title compound as a colorless solid [yield 74%, m.p. 481–482 K; Rf = 0.8 (carbon tetrachloride)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and with Uiso(H) = 1.20Ueq(C) for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ and C—Cl···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids (see text). [Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) - x + 1, - y, - z + 1; (iii) - x + 1, - y, - z; (iv) x, y + 1, z]
7-Bromo-1-(4-chlorophenylsulfanyl)-2-phenylnaphtho[2,1-b]furan top
Crystal data top
C24H14BrClOSZ = 2
Mr = 465.77F(000) = 468
Triclinic, P1Dx = 1.639 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2479 (3) ÅCell parameters from 2528 reflections
b = 8.3136 (4) Åθ = 2.3–25.7°
c = 13.9805 (6) ŵ = 2.44 mm1
α = 93.530 (2)°T = 173 K
β = 99.317 (2)°Block, colourless
γ = 90.342 (2)°0.40 × 0.20 × 0.05 mm
V = 944.07 (7) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4364 independent reflections
Radiation source: Rotating Anode3912 reflections with I > 2σ(I)
HELIOSRint = 0.024
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.5°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.560, Tmax = 0.887l = 1818
16830 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.2823P]
where P = (Fo2 + 2Fc2)/3
4364 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C24H14BrClOSγ = 90.342 (2)°
Mr = 465.77V = 944.07 (7) Å3
Triclinic, P1Z = 2
a = 8.2479 (3) ÅMo Kα radiation
b = 8.3136 (4) ŵ = 2.44 mm1
c = 13.9805 (6) ÅT = 173 K
α = 93.530 (2)°0.40 × 0.20 × 0.05 mm
β = 99.317 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4364 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3912 reflections with I > 2σ(I)
Tmin = 0.560, Tmax = 0.887Rint = 0.024
16830 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.37 e Å3
S = 1.05Δρmin = 0.33 e Å3
4364 reflectionsAbsolute structure: ?
253 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.16900 (2)0.00651 (2)0.696104 (13)0.03934 (7)
S0.32781 (5)0.41585 (5)0.26003 (3)0.02372 (9)
Cl0.23890 (5)0.23943 (5)0.00792 (3)0.03551 (11)
O0.79044 (13)0.43650 (13)0.39137 (8)0.0236 (2)
C10.52090 (18)0.40291 (18)0.33320 (11)0.0215 (3)
C20.55319 (19)0.33416 (17)0.42666 (11)0.0220 (3)
C30.45931 (19)0.25242 (17)0.48592 (11)0.0226 (3)
C40.2890 (2)0.21797 (19)0.46150 (12)0.0271 (3)
H40.23080.24970.40150.033*
C60.2914 (2)0.09476 (19)0.61175 (12)0.0292 (3)
C70.4563 (2)0.12282 (19)0.63870 (12)0.0286 (3)
H70.51140.08860.69890.034*
C80.5445 (2)0.20304 (18)0.57655 (11)0.0252 (3)
C90.7169 (2)0.2345 (2)0.60430 (11)0.0282 (3)
H90.77120.19950.66450.034*
C100.8055 (2)0.3132 (2)0.54683 (11)0.0267 (3)
H100.91970.33550.56590.032*
C50.2067 (2)0.1400 (2)0.52255 (13)0.0295 (3)
H50.09260.11650.50470.035*
C110.71960 (19)0.35948 (18)0.45816 (11)0.0232 (3)
C120.66752 (19)0.46116 (18)0.31452 (11)0.0225 (3)
C130.72391 (19)0.52879 (18)0.23142 (11)0.0227 (3)
C140.6152 (2)0.5820 (2)0.15241 (12)0.0294 (3)
H140.50040.58090.15370.035*
C150.6734 (2)0.6363 (2)0.07257 (12)0.0304 (4)
H150.59820.67080.01920.037*
C160.8403 (2)0.6409 (2)0.06961 (12)0.0289 (3)
H160.87970.67810.01460.035*
C170.9493 (2)0.5907 (2)0.14774 (13)0.0324 (4)
H171.06410.59440.14640.039*
C180.8923 (2)0.5350 (2)0.22773 (12)0.0281 (3)
H180.96850.50070.28070.034*
C190.30880 (19)0.22538 (18)0.19376 (11)0.0219 (3)
C200.1534 (2)0.1543 (2)0.16982 (12)0.0271 (3)
H200.06220.20440.19230.033*
C210.1313 (2)0.0107 (2)0.11338 (12)0.0295 (3)
H210.02510.03770.09650.035*
C220.2658 (2)0.06179 (19)0.08176 (11)0.0257 (3)
C230.4219 (2)0.0055 (2)0.10721 (11)0.0255 (3)
H230.51350.04710.08680.031*
C240.44322 (19)0.15046 (19)0.16274 (11)0.0241 (3)
H240.54960.19860.17960.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04043 (12)0.04369 (12)0.03854 (11)0.00180 (8)0.01701 (8)0.01182 (8)
S0.02033 (18)0.02376 (19)0.02618 (19)0.00233 (14)0.00094 (14)0.00188 (14)
Cl0.0318 (2)0.0343 (2)0.0391 (2)0.00495 (17)0.00692 (18)0.01079 (17)
O0.0224 (5)0.0263 (6)0.0215 (5)0.0027 (4)0.0017 (4)0.0017 (4)
C10.0211 (7)0.0209 (7)0.0220 (7)0.0008 (6)0.0022 (6)0.0002 (5)
C20.0248 (8)0.0188 (7)0.0218 (7)0.0015 (6)0.0027 (6)0.0015 (5)
C30.0267 (8)0.0178 (7)0.0235 (7)0.0013 (6)0.0060 (6)0.0014 (5)
C40.0266 (8)0.0278 (8)0.0269 (8)0.0012 (6)0.0043 (6)0.0025 (6)
C60.0369 (9)0.0229 (8)0.0310 (8)0.0010 (7)0.0145 (7)0.0022 (6)
C70.0366 (9)0.0261 (8)0.0244 (8)0.0021 (7)0.0082 (7)0.0027 (6)
C80.0317 (8)0.0211 (7)0.0233 (7)0.0022 (6)0.0061 (6)0.0002 (6)
C90.0331 (9)0.0291 (8)0.0211 (7)0.0020 (7)0.0006 (6)0.0015 (6)
C100.0266 (8)0.0290 (8)0.0226 (7)0.0003 (6)0.0006 (6)0.0008 (6)
C50.0272 (8)0.0284 (8)0.0343 (9)0.0007 (7)0.0090 (7)0.0020 (7)
C110.0265 (8)0.0213 (7)0.0215 (7)0.0006 (6)0.0040 (6)0.0010 (6)
C120.0233 (7)0.0206 (7)0.0222 (7)0.0006 (6)0.0002 (6)0.0008 (6)
C130.0247 (8)0.0185 (7)0.0247 (7)0.0009 (6)0.0038 (6)0.0002 (6)
C140.0228 (8)0.0340 (9)0.0319 (8)0.0010 (7)0.0035 (7)0.0073 (7)
C150.0311 (9)0.0308 (9)0.0289 (8)0.0011 (7)0.0012 (7)0.0086 (7)
C160.0317 (9)0.0289 (8)0.0272 (8)0.0033 (7)0.0069 (7)0.0057 (6)
C170.0240 (8)0.0412 (10)0.0325 (9)0.0022 (7)0.0051 (7)0.0056 (7)
C180.0235 (8)0.0341 (9)0.0260 (8)0.0004 (6)0.0007 (6)0.0048 (6)
C190.0225 (7)0.0245 (7)0.0185 (7)0.0001 (6)0.0026 (6)0.0036 (5)
C200.0230 (8)0.0324 (9)0.0267 (8)0.0009 (6)0.0070 (6)0.0007 (6)
C210.0222 (8)0.0349 (9)0.0307 (8)0.0053 (7)0.0043 (6)0.0019 (7)
C220.0285 (8)0.0261 (8)0.0223 (7)0.0025 (6)0.0043 (6)0.0003 (6)
C230.0237 (8)0.0301 (8)0.0232 (7)0.0014 (6)0.0058 (6)0.0021 (6)
C240.0210 (7)0.0280 (8)0.0230 (7)0.0014 (6)0.0022 (6)0.0029 (6)
Geometric parameters (Å, °) top
Br—C61.902 (2)C5—H50.9500
S—C11.756 (2)C12—C131.461 (2)
S—C191.778 (2)C13—C181.399 (2)
Cl—C221.741 (2)C13—C141.402 (2)
O—C111.367 (2)C14—C151.383 (2)
O—C121.379 (2)C14—H140.9500
C1—C121.370 (2)C15—C161.384 (2)
C1—C21.444 (2)C15—H150.9500
C2—C111.383 (2)C16—C171.385 (2)
C2—C31.421 (2)C16—H160.9500
C3—C41.414 (2)C17—C181.385 (2)
C3—C81.431 (2)C17—H170.9500
C4—C51.363 (2)C18—H180.9500
C4—H40.9500C19—C201.390 (2)
C6—C71.366 (2)C19—C241.391 (2)
C6—C51.401 (2)C20—C211.384 (2)
C7—C81.414 (2)C20—H200.9500
C7—H70.9500C21—C221.387 (2)
C8—C91.430 (2)C21—H210.9500
C9—C101.363 (2)C22—C231.384 (2)
C9—H90.9500C23—C241.387 (2)
C10—C111.402 (2)C23—H230.9500
C10—H100.9500C24—H240.9500
C1—S—C19102.09 (7)O—C12—C13114.55 (13)
C11—O—C12106.90 (12)C18—C13—C14118.09 (15)
C12—C1—C2107.21 (13)C18—C13—C12119.32 (14)
C12—C1—S126.72 (12)C14—C13—C12122.53 (14)
C2—C1—S126.02 (12)C15—C14—C13120.62 (15)
C11—C2—C3119.11 (14)C15—C14—H14119.7
C11—C2—C1104.92 (14)C13—C14—H14119.7
C3—C2—C1135.96 (14)C14—C15—C16120.68 (15)
C4—C3—C2124.52 (14)C14—C15—H15119.7
C4—C3—C8118.44 (15)C16—C15—H15119.7
C2—C3—C8117.04 (14)C15—C16—C17119.32 (16)
C5—C4—C3121.19 (15)C15—C16—H16120.3
C5—C4—H4119.4C17—C16—H16120.3
C3—C4—H4119.4C18—C17—C16120.50 (16)
C7—C6—C5121.77 (16)C18—C17—H17119.7
C7—C6—Br120.34 (13)C16—C17—H17119.7
C5—C6—Br117.89 (13)C17—C18—C13120.78 (15)
C6—C7—C8119.65 (15)C17—C18—H18119.6
C6—C7—H7120.2C13—C18—H18119.6
C8—C7—H7120.2C20—C19—C24120.00 (15)
C7—C8—C9120.21 (15)C20—C19—S118.20 (12)
C7—C8—C3119.26 (15)C24—C19—S121.76 (12)
C9—C8—C3120.53 (15)C21—C20—C19120.17 (15)
C10—C9—C8121.84 (15)C21—C20—H20119.9
C10—C9—H9119.1C19—C20—H20119.9
C8—C9—H9119.1C20—C21—C22119.34 (15)
C9—C10—C11116.57 (15)C20—C21—H21120.3
C9—C10—H10121.7C22—C21—H21120.3
C11—C10—H10121.7C23—C22—C21121.09 (15)
C4—C5—C6119.68 (16)C23—C22—Cl119.07 (12)
C4—C5—H5120.2C21—C22—Cl119.84 (12)
C6—C5—H5120.2C22—C23—C24119.38 (15)
O—C11—C2111.08 (13)C22—C23—H23120.3
O—C11—C10124.03 (14)C24—C23—H23120.3
C2—C11—C10124.88 (15)C23—C24—C19119.98 (14)
C1—C12—O109.87 (13)C23—C24—H24120.0
C1—C12—C13135.35 (14)C19—C24—H24120.0
C19—S—C1—C1296.64 (14)C9—C10—C11—O178.71 (14)
C19—S—C1—C286.08 (14)C9—C10—C11—C21.5 (2)
C12—C1—C2—C111.00 (17)C2—C1—C12—O1.22 (17)
S—C1—C2—C11176.71 (11)S—C1—C12—O176.48 (10)
C12—C1—C2—C3177.97 (16)C2—C1—C12—C13172.70 (16)
S—C1—C2—C34.3 (3)S—C1—C12—C139.6 (3)
C11—C2—C3—C4179.42 (14)C11—O—C12—C10.94 (16)
C1—C2—C3—C40.6 (3)C11—O—C12—C13174.37 (12)
C11—C2—C3—C80.9 (2)C1—C12—C13—C18162.13 (17)
C1—C2—C3—C8179.78 (16)O—C12—C13—C1811.6 (2)
C2—C3—C4—C5179.47 (15)C1—C12—C13—C1415.1 (3)
C8—C3—C4—C50.2 (2)O—C12—C13—C14171.21 (14)
C5—C6—C7—C81.5 (2)C18—C13—C14—C151.2 (2)
Br—C6—C7—C8177.91 (11)C12—C13—C14—C15176.09 (15)
C6—C7—C8—C9179.43 (15)C13—C14—C15—C160.8 (3)
C6—C7—C8—C30.5 (2)C14—C15—C16—C170.1 (3)
C4—C3—C8—C70.4 (2)C15—C16—C17—C180.6 (3)
C2—C3—C8—C7179.30 (13)C16—C17—C18—C130.2 (3)
C4—C3—C8—C9179.72 (14)C14—C13—C18—C170.7 (2)
C2—C3—C8—C90.6 (2)C12—C13—C18—C17176.65 (15)
C7—C8—C9—C10179.19 (15)C1—S—C19—C20145.84 (13)
C3—C8—C9—C100.7 (2)C1—S—C19—C2436.64 (14)
C8—C9—C10—C111.1 (2)C24—C19—C20—C211.4 (2)
C3—C4—C5—C60.8 (2)S—C19—C20—C21176.17 (13)
C7—C6—C5—C41.7 (3)C19—C20—C21—C220.5 (3)
Br—C6—C5—C4177.73 (12)C20—C21—C22—C231.2 (3)
C12—O—C11—C20.27 (16)C20—C21—C22—Cl178.21 (13)
C12—O—C11—C10179.87 (14)C21—C22—C23—C242.0 (2)
C3—C2—C11—O178.73 (12)Cl—C22—C23—C24177.39 (12)
C1—C2—C11—O0.45 (17)C22—C23—C24—C191.1 (2)
C3—C2—C11—C101.4 (2)C20—C19—C24—C230.6 (2)
C1—C2—C11—C10179.41 (14)S—C19—C24—C23176.92 (12)
Acknowledgements top

No Acknowledgement.

references
References top

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1812.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1956.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497–500.

Hranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Il Farmaco, 58, 1319–1324.

Mahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128–134.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.