organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-7,7-di­methyl-7,8-di­hydro-4H-1-benzo­pyran-2,5(3H,6H)-dione

aThe College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: shihao@zjut.edu.cn

(Received 15 November 2009; accepted 28 November 2009; online 4 December 2009)

The title compound, C17H17ClO3, has been synthesized by the reaction of p-chloro­benzaldehyde, isopropyl­idene malonate and 5,5-dimethyl­cyclo­hexane-1,3-dione with triethyl­benzyl­ammonium chloride in water as a green solvent. The six membered pyran­one ring of the hexa­hydro­coumarin system has a screw-boat conformation while the dimethyl­cyclo­hexenone system has a distorted envelope conformation. The dihedral angle between the least-squares planes of the coumarin ring system and the benzene ring is 85.64 (9)°.

Related literature

For applications of coumarin derivatives, see: Wang et al. (1999[Wang, X. F., Qu, Y. & Gu, F. (1999). Speciality Petrochemicals, 1, 49-52.]); Yang (2001[Yang, J. S. (2001). West China J. Pharm. Sci. 16, 285-288.]). For related structures, see: Itoh & Kanemasa (2003[Itoh, K. & Kanemasa, S. (2003). Tetrahedron Lett. 44, 1799-1802.]); Itoh et al. (2005[Itoh, K., Hasegawa, M., Tanaka, J. & Kanemasa, S. (2005). Org. Lett. 7, 979-981.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17ClO3

  • Mr = 304.76

  • Monoclinic, P 21 /n

  • a = 11.9005 (12) Å

  • b = 5.7971 (8) Å

  • c = 22.608 (2) Å

  • β = 93.972 (1)°

  • V = 1555.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.48 × 0.39 × 0.34 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.919

  • 7519 measured reflections

  • 2789 independent reflections

  • 1585 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.186

  • S = 1.05

  • 2789 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarin is an important chemical having unique characteristics. It is widely used in hand soaps, detergents, lotions and laser dyes (Wang et al., 1999). Coumarin and some of its derivatives have been tested in pharmacology for treatment of HIV (Yang, 2001). To obtain coumarin in a more environment friendly way, water was used as a green solvent in the synthesis of the title compound (Fig.1 and Experimental).

In the molecule of the title compound (Fig. 2), the two six membered rings of the hexahydrocoumarin system are not planar, having screw-boat and envelope conformations respectively: the pyranone ring A (O1/C1···C4/C9) adopts the screw-boat conformation with puckering parameters (Cremer & Pople, 1975) Q= 0.430 (5) Å, θ= 61.8 (5)° and ϕ = 134.7 (6)°; the ring B (C4···C9) exists in a distorted envelope conformation [Q = 0.408 (4) Å, θ= 127.0 (6)° and ϕ= 343.4 (7)°)] with C7 displaced by 0.558 (5) Å from the plane of the other ring atoms. Ring C (C12···C17) is a benzene ring, which makes a dihedral angle of 85.64 (9)° with the least-squares plane of the coumarin ring. The analogue of the title compound including Br in place of Cl has been reported and an enantiomerically pure crystal characterized by X-ray diffraction (Itoh & Kanemasa, 2003; Itoh et al., 2005).

Related literature top

For applications of coumarin derivatives, see: Wang et al. (1999); Yang (2001). For related structures, see: Itoh & Kanemasa (2003); Itoh et al. (2005). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 4-chlorobenzaldehyde (100 mmol), 5,5-dimethyl-1,3-cyclohexanedione (100 mmol), isopropylidene malonate (100 mmol), triethylbenzylammonium chloride (TEBA) (15 mmol) and 400 mL of water was transferred into a flask connected with refluxing equipment (Fig. 1). After stirring at 345 K (72°C) for 5 h, the reaction mixture was cooled to room temperature, the precipitated product was filtered and recrystallized with ethanol to give the title compound. Crystals suitable for X-ray structure analysis were obtained by slow evaporation from a solution of isopropyl alcohol at room temperature.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.98 Å. They were treated as riding atoms, with Uiso(H) = 1.5Ueq(carrier C) for methyl groups and Uiso(H) = 1.2Ueq(carrier C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The preparation of the title compound.
[Figure 2] Fig. 2. Structure of the title compound, showing 30% probability displacement ellipsoids with atomic numbering scheme.
4-(4-Chlorophenyl)-7,7-dimethyl-7,8-dihydro-4H-1-benzopyran- 2,5(3H,6H)-dione top
Crystal data top
C17H17ClO3F(000) = 640
Mr = 304.76Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1909 reflections
a = 11.9005 (12) Åθ = 2.7–23.0°
b = 5.7971 (8) ŵ = 0.25 mm1
c = 22.608 (2) ÅT = 298 K
β = 93.972 (1)°Prism, colorless
V = 1555.9 (3) Å30.48 × 0.39 × 0.34 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2789 independent reflections
Radiation source: fine-focus sealed tube1585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1214
Tmin = 0.889, Tmax = 0.919k = 66
7519 measured reflectionsl = 2720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0667P)2 + 1.4872P]
where P = (Fo2 + 2Fc2)/3
2789 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.51 e Å3
0 constraints
Crystal data top
C17H17ClO3V = 1555.9 (3) Å3
Mr = 304.76Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9005 (12) ŵ = 0.25 mm1
b = 5.7971 (8) ÅT = 298 K
c = 22.608 (2) Å0.48 × 0.39 × 0.34 mm
β = 93.972 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2789 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1585 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.919Rint = 0.034
7519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
2789 reflectionsΔρmin = 0.51 e Å3
192 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43477 (9)0.5886 (3)0.12137 (6)0.1069 (6)
O10.1778 (2)0.6708 (5)0.18437 (12)0.0681 (8)
O20.1132 (3)0.5408 (7)0.26641 (15)0.1127 (13)
O30.0220 (3)1.3042 (5)0.07706 (14)0.0936 (10)
C10.1180 (4)0.7039 (10)0.2336 (2)0.0765 (13)
C20.0708 (4)0.9367 (9)0.24091 (17)0.0810 (14)
H2A0.13051.03950.25590.097*
H2B0.01490.93030.27010.097*
C30.0160 (3)1.0357 (7)0.18295 (16)0.0598 (10)
H30.00491.20170.18830.072*
C40.0969 (3)1.0017 (6)0.13547 (15)0.0505 (9)
C50.0888 (3)1.1459 (7)0.08223 (17)0.0602 (10)
C60.1584 (3)1.0799 (8)0.03203 (18)0.0751 (12)
H6A0.17201.21680.00890.090*
H6B0.11560.97270.00640.090*
C70.2710 (3)0.9703 (7)0.05132 (16)0.0580 (10)
C80.2544 (3)0.7783 (7)0.09489 (18)0.0631 (10)
H8A0.22910.64160.07310.076*
H8B0.32650.74240.11550.076*
C90.1725 (3)0.8325 (6)0.13923 (16)0.0518 (9)
C100.3488 (4)1.1568 (8)0.0813 (2)0.0812 (13)
H10A0.31371.22110.11450.122*
H10B0.36161.27670.05320.122*
H10C0.41951.08830.09470.122*
C110.3302 (4)0.8824 (9)0.0017 (2)0.0955 (15)
H11A0.40200.81870.01150.143*
H11B0.34091.00770.02850.143*
H11C0.28490.76530.02170.143*
C120.0981 (3)0.9254 (6)0.16736 (15)0.0524 (9)
C130.1075 (3)0.7218 (7)0.13616 (17)0.0585 (10)
H130.04280.65310.12350.070*
C140.2100 (3)0.6170 (7)0.12320 (17)0.0636 (10)
H140.21410.47780.10270.076*
C150.3048 (3)0.7190 (8)0.14062 (17)0.0638 (11)
C160.3001 (3)0.9189 (9)0.17169 (18)0.0719 (12)
H160.36580.98540.18380.086*
C170.1966 (3)1.0245 (7)0.18543 (17)0.0666 (11)
H170.19321.16180.20680.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0534 (6)0.1496 (13)0.1172 (11)0.0213 (7)0.0011 (6)0.0253 (9)
O10.0610 (16)0.0693 (18)0.0721 (18)0.0014 (13)0.0099 (14)0.0155 (15)
O20.128 (3)0.132 (3)0.075 (2)0.020 (2)0.0128 (19)0.040 (2)
O30.110 (2)0.074 (2)0.097 (2)0.0438 (19)0.0137 (19)0.0108 (18)
C10.072 (3)0.101 (4)0.054 (3)0.020 (3)0.017 (2)0.008 (3)
C20.081 (3)0.110 (4)0.050 (2)0.024 (3)0.004 (2)0.018 (3)
C30.064 (2)0.057 (2)0.059 (2)0.0037 (19)0.0033 (18)0.0186 (19)
C40.0476 (18)0.048 (2)0.055 (2)0.0025 (16)0.0024 (15)0.0082 (18)
C50.060 (2)0.053 (2)0.067 (3)0.0078 (19)0.0015 (19)0.001 (2)
C60.073 (3)0.091 (3)0.061 (2)0.014 (2)0.002 (2)0.007 (2)
C70.055 (2)0.062 (2)0.057 (2)0.0042 (18)0.0022 (17)0.002 (2)
C80.051 (2)0.055 (2)0.084 (3)0.0043 (18)0.0070 (19)0.001 (2)
C90.0462 (19)0.051 (2)0.057 (2)0.0052 (17)0.0076 (16)0.0054 (19)
C100.073 (3)0.069 (3)0.101 (3)0.013 (2)0.002 (2)0.005 (3)
C110.092 (3)0.110 (4)0.087 (3)0.014 (3)0.025 (3)0.007 (3)
C120.056 (2)0.054 (2)0.047 (2)0.0089 (17)0.0058 (16)0.0044 (18)
C130.0450 (19)0.062 (2)0.068 (2)0.0058 (17)0.0046 (17)0.014 (2)
C140.053 (2)0.066 (3)0.071 (3)0.0035 (19)0.0004 (18)0.002 (2)
C150.050 (2)0.081 (3)0.061 (2)0.002 (2)0.0028 (18)0.018 (2)
C160.053 (2)0.094 (3)0.071 (3)0.020 (2)0.022 (2)0.018 (3)
C170.077 (3)0.064 (3)0.060 (2)0.015 (2)0.015 (2)0.004 (2)
Geometric parameters (Å, º) top
Cl1—C151.749 (4)C7—C101.549 (5)
O1—C11.374 (5)C8—C91.480 (5)
O1—C91.384 (4)C8—H8A0.9700
O2—C11.206 (5)C8—H8B0.9700
O3—C51.214 (4)C10—H10A0.9600
C1—C21.475 (7)C10—H10B0.9600
C2—C31.534 (6)C10—H10C0.9600
C2—H2A0.9700C11—H11A0.9600
C2—H2B0.9700C11—H11B0.9600
C3—C41.503 (5)C11—H11C0.9600
C3—C121.520 (5)C12—C131.376 (5)
C3—H30.9800C12—C171.392 (5)
C4—C91.330 (5)C13—C141.375 (5)
C4—C51.463 (5)C13—H130.9300
C5—C61.501 (5)C14—C151.357 (5)
C6—C71.519 (5)C14—H140.9300
C6—H6A0.9700C15—C161.354 (6)
C6—H6B0.9700C16—C171.391 (6)
C7—C81.509 (5)C16—H160.9300
C7—C111.520 (6)C17—H170.9300
C1—O1—C9120.2 (3)C9—C8—H8B108.7
O2—C1—O1116.0 (5)C7—C8—H8B108.7
O2—C1—C2127.8 (5)H8A—C8—H8B107.6
O1—C1—C2116.2 (4)C4—C9—O1122.9 (3)
C1—C2—C3112.9 (3)C4—C9—C8126.0 (3)
C1—C2—H2A109.0O1—C9—C8110.9 (3)
C3—C2—H2A109.0C7—C10—H10A109.5
C1—C2—H2B109.0C7—C10—H10B109.5
C3—C2—H2B109.0H10A—C10—H10B109.5
H2A—C2—H2B107.8C7—C10—H10C109.5
C4—C3—C12112.6 (3)H10A—C10—H10C109.5
C4—C3—C2107.8 (3)H10B—C10—H10C109.5
C12—C3—C2111.1 (3)C7—C11—H11A109.5
C4—C3—H3108.4C7—C11—H11B109.5
C12—C3—H3108.4H11A—C11—H11B109.5
C2—C3—H3108.4C7—C11—H11C109.5
C9—C4—C5118.7 (3)H11A—C11—H11C109.5
C9—C4—C3121.0 (3)H11B—C11—H11C109.5
C5—C4—C3120.2 (3)C13—C12—C17117.7 (3)
O3—C5—C4121.1 (4)C13—C12—C3121.3 (3)
O3—C5—C6120.8 (4)C17—C12—C3121.0 (3)
C4—C5—C6117.9 (3)C14—C13—C12121.9 (3)
C5—C6—C7114.3 (3)C14—C13—H13119.1
C5—C6—H6A108.7C12—C13—H13119.1
C7—C6—H6A108.7C15—C14—C13119.2 (4)
C5—C6—H6B108.7C15—C14—H14120.4
C7—C6—H6B108.7C13—C14—H14120.4
H6A—C6—H6B107.6C16—C15—C14121.2 (4)
C8—C7—C6110.1 (3)C16—C15—Cl1120.2 (3)
C8—C7—C11110.9 (3)C14—C15—Cl1118.6 (4)
C6—C7—C11111.2 (3)C15—C16—C17119.8 (4)
C8—C7—C10109.3 (3)C15—C16—H16120.1
C6—C7—C10108.8 (3)C17—C16—H16120.1
C11—C7—C10106.5 (3)C16—C17—C12120.2 (4)
C9—C8—C7114.1 (3)C16—C17—H17119.9
C9—C8—H8A108.7C12—C17—H17119.9
C7—C8—H8A108.7
C9—O1—C1—O2169.1 (3)C5—C4—C9—O1172.3 (3)
C9—O1—C1—C212.9 (5)C3—C4—C9—O13.8 (5)
O2—C1—C2—C3138.5 (4)C5—C4—C9—C82.4 (5)
O1—C1—C2—C343.7 (5)C3—C4—C9—C8178.5 (3)
C1—C2—C3—C448.0 (5)C1—O1—C9—C412.2 (5)
C1—C2—C3—C1275.9 (4)C1—O1—C9—C8172.4 (3)
C12—C3—C4—C997.0 (4)C7—C8—C9—C416.7 (5)
C2—C3—C4—C926.0 (5)C7—C8—C9—O1168.1 (3)
C12—C3—C4—C579.1 (4)C4—C3—C12—C1335.1 (5)
C2—C3—C4—C5157.9 (3)C2—C3—C12—C1386.0 (4)
C9—C4—C5—O3179.1 (4)C4—C3—C12—C17146.4 (3)
C3—C4—C5—O34.7 (5)C2—C3—C12—C1792.5 (4)
C9—C4—C5—C66.0 (5)C17—C12—C13—C140.3 (5)
C3—C4—C5—C6170.1 (3)C3—C12—C13—C14178.2 (4)
O3—C5—C6—C7152.0 (4)C12—C13—C14—C151.3 (6)
C4—C5—C6—C733.1 (5)C13—C14—C15—C161.6 (6)
C5—C6—C7—C849.9 (5)C13—C14—C15—Cl1177.7 (3)
C5—C6—C7—C11173.2 (4)C14—C15—C16—C170.9 (6)
C5—C6—C7—C1069.9 (5)Cl1—C15—C16—C17178.3 (3)
C6—C7—C8—C941.4 (4)C15—C16—C17—C120.0 (6)
C11—C7—C8—C9164.8 (3)C13—C12—C17—C160.3 (5)
C10—C7—C8—C978.1 (4)C3—C12—C17—C16178.8 (3)

Experimental details

Crystal data
Chemical formulaC17H17ClO3
Mr304.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.9005 (12), 5.7971 (8), 22.608 (2)
β (°) 93.972 (1)
V3)1555.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.48 × 0.39 × 0.34
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.889, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
7519, 2789, 1585
Rint0.034
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.186, 1.05
No. of reflections2789
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.51

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The research was supported by the Open Foundation of Key Disciplines within the Zhejiang Provincial Key Disciplines.

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationItoh, K., Hasegawa, M., Tanaka, J. & Kanemasa, S. (2005). Org. Lett. 7, 979–981.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationItoh, K. & Kanemasa, S. (2003). Tetrahedron Lett. 44, 1799–1802.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. F., Qu, Y. & Gu, F. (1999). Speciality Petrochemicals, 1, 49–52.  Google Scholar
First citationYang, J. S. (2001). West China J. Pharm. Sci. 16, 285–288.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds